International Workshop on Quantum Magnets in Extreme Conditions 2021. 3. 22-26 online

Metastable magnetization plateau states observed in an S = 1 two-leg spin ladder by fast sweeping of a magnetic field up to 150 T

Yasuhiro H. Matsuda

Institute for Solid State Physics, University of Tokyo

Collaborators

Kazuya Nomura, Akihiko Ikeda, Yoshimitsu Kohama

Institute for Solid State Physics, University of Tokyo

Yuko Hosokoshi, Toshio Ono, Naoki Amaya

Department of Physical Science, Osaka Prefecture University

Spin ladder

Physics in between 1D and 2D spin systems

Properties of S = 1/2 AF spin ladder

Legs	Even	Odd
Energy gap	Gap	Gapless
Correlation function	Exponential Decay	Power Decay

E. Dagotto and T. M. Rice, Science, 271, 681 (1996).

S=1/2 two-leg spin ladder $(C_5H_{12}N)_2Cu Br_4$ J_{\parallel} O_{Br} a-axis

Organic S =1 two-leg spin ladder

BIP-TENO 3, 3', 5, 5'-tetrakis(*N*- *tert*-butylaminoxyl)biphenyl ($C_{28}H_{42}N_4O_4$)

K. Kato et al., J. Phys. Soc. Jpn. 69, 1008 (2000)

High-magnetic-field magnetization process in BIP-TENO

K. Okamoto, N. Okazaki, T. Sakai, J. Phys. Soc. Jpn. 70, 636, 2001

Higher magnetic field magnetization process should be uncovered

Generation of ultrahigh magnetic fields

Non-destructive or Destructive ?

Non-destructive	Destructive	
Wire-wound coil (1 mH)	Low-inductance coil (10 nH)	
$1 \sim 100 \text{ ms}$	$1-100 \ \mu s$	
20 - 70 T (B _{max} = 101 T)	100 – 1000 T	
10 kV,10 mF; 500 kJ (a middle class capacitor bank)	50 kV , $160 \mu\text{F}$; 200 kJ (single-turn) 50 kV, $4 mF$; $5 MJ$ (flux compression)	
Very long 1-10 s 45 -60 T generator (210 MJ, 600 MJ)	Laser driven methods $1000 \text{ T} - 1000 \text{ kT}$ ns -fs 0.0001 - $100 \mu\text{m}^2$	
DC (10 – 45 T) min. – day 30 MW (45 T)	Not suitable for condensed matter physics M. Murakami, et Sci. Rep. 10, 16653 (2020)	

Sci. Rep. 10, 16653 (2020)

 $J_{c\phi}$ 10¹⁵ A cm⁻²

al.

7

 $\sim 0.1 - 1$

 $J_{i\phi}$

Destructive means for generation of a strong *B* exceeding 100 T

Fritz Herlach, Rep. Prog. Phys. 62 (1999) 859

Single-Turn Coil (STC) at ISSP $I_{max} = 4MA \begin{array}{c} 160 / 263.5 \text{ mF} \\ 50 / 40 \text{ kV} \end{array}$

0

-50

Λ

5

Relatively compact system Things inside are intact (only coil is broken)

Magneto-optical spectroscopies Magnetization Electrical transport Magnetostriction Sound velocity

10

Time (µs)

7.0 μs 9.0 μs 10.0 μs 12.0 μs

10

1.5

1.0

0.5

0.0

15

Transmissior

The Electromagnetic Flux Compression (EMFC)

Indoor Strongest Magnetic Field Worldwide

Setting a Coil After the compression $B_{\rm max} \sim {\rm Flux} ({\rm Seed \ Coil})^{\rm Shield \ room}$ Control (Lines) Final diameter O/E 1200 T 11 Alakamura et al., Rev. \$ci. Instru<mark>m. **89**,095106 (2018)</mark> 640nm 2.0mm Laser 85mm

EMFC magnet

Insulator-metal transition

 $V_{0.94}W_{0.06}O_2$

Y. H. Matsuda et al, Nat. Commun. **11**, 3591 (2020)

Magnetization measurement

S. Takeyama, et al., J. Phys. Soc. Jpn. 81, 014702 (2012)

Magnetization curve measured up to 100 T

Non destructive coil (short pulse) : $\Delta t \sim 5 \text{ ms}$

Б(I)

Magnetocaloric Effect (MCE) ?

Adiabatic condition (6 μ s) can make temperature lower.

Irreversible heating becomes large after the gap closes. (B > 10 T)

Magnetostriction can be an origin for the discrepancy between the magnetization curves in different-pulse-duration magnetic fields

Magnetostriction at 20 T with different speed of the magnetic field

Molecular arrangement of BIP-TENO

Master thesis (Osaka Pref. Univ. 2011)

The biphenyl torsion angle may change through the magnetic interactions when magnetic field is applied.

Exchange striction can occur.

Can stabilize the 1/4 plateau

Symmetry breaking with nontrivial periodicity

1. The novel $\frac{1/3}{2}$ plateau is found to only appear when *B* is swept in μ s time scale.

2. In a slow *B* sweep, 1/4 plateau (green curve) is stabilized probably due to the contraction of the lattice.

3. The measured intriguing magnetization process (red one) is due to metastable quantum phases with spin-lattice separation.

4. The characteristic time scale for the lattice deformation would approximately be 0.5 ms.