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SPIN-GAPPED MATERIALS
๏ Quasi-1D: Ladders, Haldane chains, spin-Peierls chains...

๏ Quasi-2D: bilayers
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MAGNETIC FIELD INDUCED BOSE-EINSTEIN CONDENSATION

the density of condensed bosons, there is also a uniform spin
component along the field direction (canted XY ordering) that
corresponds to the overall boson density.
We note that for two-level systems, bosons are subject to the

constraint of a hard-core repulsion, e.g., a maximum of one
boson can occupy each effective orbital. This constraint is
essential to guarantee that a two-level system is mapped into
another two-level system (the mapping must not change the
dimension of the Hilbert space). In a mean-field description,
each two-level system is in a linear superposition of the two
states with different magnetization, i.e., a linear superposition
of states with zero and one boson. As the magnetic field
increases, the moments become more polarized along the field
direction and lose their xy component. The ordered moment is
finally suppressed at the second critical pointH ¼ Hc2, where
the spins become fully polarized. Above this second critical
field, the ground state contains one hard-core boson in each
site and can be regarded as a Mott insulator in the bosonic
language.
The two QCPs at Hc1 and Hc2 belong to the BEC

universality class in dimension D ¼ dþ z. The dynamical
exponent is z ¼ 2 because the single-boson dispersion is
quadratic at the BEC QCPs: ω ∝ kz for k ≪ 1 with z ¼ 2.
This quadratic dispersion is a direct consequence of the fact that
the driving parameter (magnetic field) couples to a conserved
quantity (total magnetization Mz): the quadratic shape of the
single-particle excitations of the quantum paramagnet cannot
be modified whenH approachesHc1 because these excitations
have the same Sz eigenvalue. Therefore, the only effect of the
applied field is to close the gap while keeping the dispersion
unaltered all theway up toHc1.Mxy is zero outside of the range
Hc1 < H < Hc2. Inside that interval it is dome shaped, reach-
ing a peak somewhere between the two critical fields. The XY
ordering requires a spontaneous symmetry breaking that
chooses both a size and an orientation of the moments, i.e.,
the order parameter is a two-dimensional vector. Thus, this
ordering can be suppressed either by suppressing the amplitude
of the order parameter or by increasing its phase fluctuations.
BEC-like transitions correspond to the first case where the
amplitude is suppressed, while transitions induced by phase
fluctuations lead to the so-calledO(2) universality class that has
a dynamical exponent z ¼ 1. The critical exponents expected
for the BEC QCP are summarized in Table III. The dispersion

relation of the bononic quasiparticles (magnons in the spin
language) becomes linear,ω ∝ k for k ≪ 1, in the ordered state
that exists between Hc1 and Hc2. This is the Goldstone mode
that is expected from the spontaneous breaking of the U(1)
symmetry.

III. EXPERIMENTS

A. Compounds

In the following we summarize experiments on quantum
magnets that have been described in terms of BEC. The
quantum magnets described in this section benefit from
the fact that BEC behavior can be accessed for values of
the tuning parameters, such as temperature, magnetic field,
and pressure, that are readily accessible in many condensed
matter physics laboratories (see Fig. 5). Indeed, Table I shows
magnetic ordering temperatures compatible with standard
liquid 4He as well as 3He-4He dilution refrigerators, when
magnetic fields produced by either superconducting, resistive,
resistive hybrid, or resistive pulsed magnets are applied.
Simultaneously, the relatively small exchange interactions
that make these systems amenable to liquid helium studies can
be tuned as a function of laboratory-produced external
pressures.
As we saw in the previous sections, the mapping between

spins and bosons requires at least two different low-energy
spin levels. Then, each spin level corresponds to a different
boson occupation and the gap between these levels can be
tuned with magnetic field. In most quantum magnets exhibit-
ing BEC, a nonmagnetic ground state at zero magnetic field is
separated from a magnetic excited state by a gap Δ. This gap
can be tuned to zero by applied magnetic fields, resulting in a
magnetic-field-induced QCP at Hc1 that belongs to the BEC
universality class.
There are several different ways to create the zero-field gap.

The most widely studied method involves S ¼ 1=2 dimers,
and has been investigated in BaCuSi2O6, TlCuCl3,
KCuCl3, Pb2V3O9, Ba3Cr2O8, Sr3Cr2O8, ðCuClÞLaNb2O7,
Sul-Cu2Cl4, and PHCC among others (see Table I). In these
spin dimer materials, two closely coupled S ¼ 1=2 spins
form a dimer with antiferromagnetic coupling J0. Thus, the

FIG. 5 (color online). ðT;HÞ phase diagram for several quantum
magnets studied in the context of BEC.

TABLE III. Temperature dependencies of the thermodynamic
quantities: Phase boundary, magnetization MðTÞ, thermal expansion
ΔL=L; αðTÞ, specific heat CðTÞ, thermal Grüneisen parameter ΓðTÞ,
and magnetic Grüneisen parameter ΓmagðTÞ at the field-induced QCP
at H ¼ Hc as the temperature T → 0. The variable d denotes the
spatial dimensionality of the system. The exponents of the Ising-like
QCP are given for d ¼ 3.

Property XYAFM order Ising (3D)

Phase boundary HcðTÞ −Hcð0Þ Td=2, ν ¼ 2=d T2

Magnetization MðHc; TÞ Td=2 T2

Thermal expansion ΔL
L ðHc; TÞ Td=2 T2

Coefficient of thermal
expansion αðHc; TÞ

Tðd=2Þ−1 T

Specific heat CðHc; TÞ Td=2 T3

Grüneisen parameter Γ ∝ α=C T−1 T−2
Magnetic Grüneisen Γmag ∝ α=M T−1 T−2
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a-axis8 unlike Zn and Mg-doped CuGeO3 where it is along
the c-axis. TSP and the Néel temperature (TN) were deter-
mined in all our samples, and are defined as temperatures
giving the maximum of dx/dT and d(xT)/dT respectively
~see Ref. 7!. The resulting (T ,x) phase diagram is presented
in Fig. 2. One can notice that the Cu12xMxGeO3 compounds
display the same phase diagram for M5Zn, Mg, and Ni,
although the TN(x) curve for Cu12xNixGeO3 has a maxi-
mum at a slightly lower temperature. For these three substi-
tutions, the SP transition line can be well described by the
linear equation TSP(x)/TSP(0)512ax with a'15 ~see
solid line in Fig. 2!, so that TSP(x) tends to zero for x
'0.067. In CuGe12ySiyO3, TSP(y) was found to follow the
same simple equation with a'44.7 This leads to the scaling
y'3x . The TSP(y) and TN(y) data from Ref. 7 are also
plotted in Fig. 2 using this scaling. Then, the Néel tempera-
tures, TN(x) for Zn and Mg, and TN(y) for Si, are also
coincident. The TN(x) data of Zn-doped CuGeO3 at low x
suggest the absence of a threshold concentration for the oc-
currence of the AF phase: The Néel temperature seems to
tend to zero as x tends to zero. Note that it was not possible
to make this assumption for CuGe12ySiyO3 ~Ref. 7! due to
the three times stronger effect of Si-substitution.
For the low concentration (x<0.02) Zn, Mg, and Ni-

doped samples, we assume that below TSP(x) the Cu spins
give rise to two main contributions: spin-Peierls ~dimerized
spins! and paramagnetic ~free spins!. We thus fit the molar
susceptibility data x(x ,T) between TN(x) and TSP(x) to the
following relation:

x~x ,T !5x0~x !1KPARA~x !
C

T2u
1KSP~x !xSP~T !. ~1!

The first term x0 is a small constant which includes the dia-
magnetic contributions of both the sample holder and the
sample itself as well as the Van Vleck contribution of the
sample. The second term represents the paramagnetic Curie-
Weiss contribution of a small proportion KPARA(x) of S
51/2 free spins, with C the molar Curie constant of pure

CuGeO3. The third term represents the spin-Peierls contribu-
tion of a proportion KSP(x) of Cu spins which is assumed to
have the same temperature dependence, with lower TSP(x),
as in the pure sample. Thus we used, for the fits, the phe-
nomenological expression previously established for the pure
sample,7 with no adjustable parameter:

xSP~T !5F~ t !5~a01a1t1a2t2!expS 2
A
t D . ~2!

In this relation, the exponential function accounts for the
presence of the SP gap and t is the reduced temperature
T/TSP(x).
The fits of the x(T) data to expression ~1! for

Cu0.993Zn0.007GeO3 ~along the c axis! and for
Cu0.992Ni0.008GeO3 ~along the c and a axis! are shown in Fig.
1 ~solid lines!. As expected, the x0(x) values remain very
small and do not depend on the doping level for the Zn and
Mg-doped samples (ux0u,0.131023 emu/mol). However,
this is not the case for the Ni-doped samples where x0 in-
creases from 0.45 to 1.231023 emu/mol when x increases
from 0.01 to 0.02. This latter observation will be discussed
further on. The doping level dependence of the spin propor-
tions KPARA and KSP is shown in Fig. 3. The KPARA(x) and
KSP(x) data are to a good approximation coincident for the
three substitutions, except the values of KPARA(x) for Ni,
which are on the average two times smaller than for Mg and
Zn. These latter values are also slightly different for the c
and a-axis. The KPARA(x) and KSP(x) data were fit to the
linear laws:

KPARA~x !5ax , ~3!

KSP~x !512bx ~4!

and the following coefficients were obtained: a'1.2 and
b'32. An extrapolation to KSP(x)50 implies that the SP
phase would disappear for x'0.03. The behavior of
KPARA(x) for Zn or Mg implies that each impurity ion is

FIG. 2. @T ,x(y)# phase diagram of Cu12xMxGeO3 with M
5Zn, Mg, Ni, and CuGe12ySiyO3, using the scaling y53x . Within
this scaling, one can notice the universal character of the phase
diagram, except for the TN(x) data in Ni-doped CuGeO3. The solid
line is described by the equation TSP(x)5TSP(0)@1215x# .

FIG. 3. Doping level dependence of the proportions of spins in
the paramagnetic ~open symbols! and spin-Peierls ~solid symbols!
states, for Cu12xMxGeO3 and CuGe12ySiyO3, using the scaling y
53x . These two contributions were fitted to a linear law ~solid
lines! and extrapolated up to x'0.03 (y'0.01) ~dashed lines!. All
these data were obtained with Hic , except the down triangles for
which Hia .
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netic susceptibilities in TlCu1!xMgxCl3 with various x for
H!!2,0,1" . The magnetic field of 0.1 T was applied in the
measurements. For x"0, no anomaly indicative of the mag-
netic ordering can be seen down to 1.8 K, although a slight
increase of the magnetic susceptibility was observed due to a
small amount of impurities or lattice defects. On the other
hand, the cusplike anomalies indicative of antiferromagnetic
ordering were clearly observed for x#0. With increasing x,
the transition temperature TN and the magnitude of the mag-
netic susceptibility increase. The transition temperatures for
x$0.025 were plotted in Fig. 5 as a function of x. The tran-
sition temperature TN shows a tendency to saturate at TN
%3.5 K. Although the behavior of the phase transition for
x#0.025 is of great interest, the measurements were not per-
formed, because it is difficult to prepare good single crystals
of TlCu1!xMgxCl3 with x#0.025 at present.
It is considered that the direction of the easy axis does not

strongly depend on x, and is close to the !2,0,1" direction,
because the susceptibilities for various x display a similar
cusplike anomaly for H!!2,0,1" , as shown in Fig. 4. Thus, it
is expected that the spin-flop transition is observed for
H!!2,0,1" , and the transition field is close to that for H! easy
axis. Figure 6 shows the magnetization curves of
TlCu1!xMgxCl3 with various x measured at T"1.8 K for
H!!2,0,1" . For x"0, the magnetization is almost zero up to
the gap field Hg"&/g'B%6 T, and then it increases rap-
idly. For x#0, the magnetization increases with a finite
slope, and exhibits a jump indicative of the spin-flop transi-
tion at H%0.35 T with increasing magnetic field. It is noted
that spin-flop field Hsp is almost independent of x, although
the amount of the magnetization jump increases with in-
creasing x.
A theoretical description of the spin-flop transition in the

impurity-induced antiferromagnetic phase has not been es-
tablished to date. In the conventional antiferromagnet, spin-
flop field Hsp is proportional to the square root of the product
of anisotropy energy and the exchange interactions and the
magnitude of the spin moment. The small value of %0.35 T
of spin-flop field Hsp may be indicative of the low induced

spin moments around the impurities or the low anisotropy
energy. At present, however, we have no explanation for why
the spin-flop field is independent of x.
For x$0.017, the magnetization tends to increase at H

(6 T, which is almost the same as the gap field Hg of
%6 T of pure TlCuCl3, as shown in Fig. 6. This suggests
that the excitation gap remains for x$0.017, i.e., antiferro-
magnetic ordering coexists with the excitation gap. If the gap
remains, field-induced magnetic ordering may occur, as ob-
served in pure TlCuCl3.14,17,18 In TlCuCl3, the magnetization
has the cusplike minimum at the transition temperature.14,17
This behavior can be described in terms of the Bose-Einstein
condensation of the excited triplets )magnons*.19 In the or-
dered phase, transverse staggered magnetic ordering with re-
spect to the applied magnetic field occurs.19–21 This trans-
verse staggered magnetic ordering, in which two spins on the
same dimer are antiparallel, was confirmed by neutron
elastic-scattering analysis in high magnetic fields for H!b .18
For this field direction, it was observed that spins lie in the
)0, 1, 0* plane at an angle of 39° to the a axis. This spin
direction is almost the same as that of the easy axis in the
impurity-induced antiferromagnetic phase for
TlCu0.978Mg0.022Cl3. Thus, the relation between the impurity-
induced antiferromagnetic phase and the field-induced or-
dered phase is of great interest.
In order to investigate whether or not field-induced mag-

netic ordering occurs in Mg2$-doped TlCuCl3, we examined
the temperature dependence of the magnetization in
TlCu0.992Mg0.008Cl3 at various magnetic fields up to 7 T for
H!!2,0,1" . However, no definite phase transition was de-
tected due to the large Curie-Weiss term, although a fairly
sharp inflection point indicative of the phase transition was
observed for H#5 T. Thus, other experiments such as spe-
cific heat and neutron-scattering measurement are required in
order to determine whether field-induced magnetic ordering
occurs also in Mg2$-doped TlCuCl3.
In conclusion, we carried out magnetization measure-

ments in TlCu1!xMgxCl3. Impurity-induced antiferromag-

FIG. 5. Phase-transition temperature TN as a function of x in
TlCu1!xMgxCl3. The solid line is a guide for the eyes.

FIG. 6. Magnetization curves of TlCu1!xMgxCl3 measured at
T"1.8 K for H!!2,0,1" for various x. The values of magnetization
are shifted upward by 10 emu/mol with increasing x.
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accuracy at x!0.02, TN(WC"Q1D)!TN(exp) is deduced.
We may also predict TN(WC"Q1D)!0.09, 0.31, and 0.48
K for x!0.001, 0.003, and 0.005, respectively. On the other
hand, there is no evidence for an onset of AF-LRO down to
1.4 K for the La doping, nevertheless !s /a’s in x
!0.01–0.03 are almost equivalent to those in the Zn and Ni
doping (x!0.01–0.02). This lack of AF-LRO in the La dop-
ing may be relevant to the fact that the unpaired spin S0
"1/4 at the Cu sites around the La impurity is reduced to a
half of S0"1/2 in the Zn and Ni doping.
From the x dependence of TN!a exp("b/x) in Zn-doped

CuGeO3, it was concluded that there is no critical concentra-
tion for the occurrence of AF-LRO.31 This indicates that the
dimerization sustains the coherence of IISP in this system,
which was consistent with the theory of the impurity-doped
spin-Peierls system.15 The TN and the IISP in this system are
considered to be determined by a relative large and uniform
interchain interaction with a unique ‘‘soliton length’’ !0 /a
!7.78 relevant to CuGeO3 with J0"100 K and a spin gap,
#"25 K.
The Q1D nature of IISP in the impurity-doped Sr123 is

because the staggeredness is perfectly maintained by the

quantum coherence in the gapped spin-1/2 Heisenberg two-
leg ladder system. The impurity that depletes a single spin
breaks the singlet formation locally and eventually the in-
duced moments partially lift the spin frustration at the inter-
face around S0. It may be due to this weak interladder inter-
action to enhance the Q1D-IISP of which the correlation
length !s /a!A#BDAV increases with decreasing x. We re-
mark that TN is determined by a strength of interladder in-
teraction and a size of S0.

V. CONCLUSION

On the base of the extensive Cu NMR and NQR studies
on the impurity-doped spin-1/2 two-leg spin-ladder SrCu2O3
with the gap, we have clarified the characteristics of Q1D
impurity-induced staggered polarizaton $IISP% and the onset
of AF-LRO in the Zn and Ni doping (x!0.01 and 0.02%, not
for the La doping up to x!0.03. We have found that the
correlation length !s /a of IISP that is T independent is
scaled to a mean distance DAV between the impurities. An
experimental relation of !s /a!A#BDAV with A"2.5 and
B"0.1 has been obtained in x!0.001–0.02 for the Zn and
Ni doping. !s /a"50 for DAV!500 in the Zn doping (x
!0.001) is two orders of magnitude longer than !0 /a
"3–8 in Sr123.1,2,32 Based on the computational techniques
on the 2$50 cluster of the ladders,28 it was shown that all
spins of the (2$50) cluster have nonvanishing AF suscep-
tibility in the case of J! /J0!0.5 $Ref. 32% and x!0.014. We
suggest that the striking experimental relation !s /a!A
#BDAV is relevant to some nonuniform weak interladder
interaction because the magnetic frustration at the interface is
partially lifted around impurities.
From the comprehensive analyses on the broadened Cu

NQR spectra for the Zn and Ni doping, it was shown that the
AF moments &'(a!0.0366(0.0488)'B for x!0.01 $0.02%

FIG. 13. Exponential decrease of AF moments !' l! in Eqs. $2%
and $3% for the Zn doping with $a% x!0.02 and $b% x!0.01 at 1.4 K.
Slash line indicates the central region between impurities where the
Cu NQR spectrum was observable. $a% x!0.02, &'(a!0.0488,
'AF!0.39'B (SAF"0.20), !s /a!4.5, and L!25. $b% x!0.01,
&'(a!0.0366'B , 'AF!0.41'B (SAF"0.21), !s /a!8, and L
!50.

FIG. 14. x dependence of the Néel temperature TN predicted
from the formula TN!J0 exp„"DAV /(!s /a)… $Ref. 26% based on
the weakly coupled quasi-1D model for the Zn doping with x
!0.001–0.02. J0!2000 K is the nearest-neighbor exchange cou-
pling along the leg. !s /a’s were those estimated from the present
NMR measurements $see Fig. 6%. This model explains the experi-
mental TN(exp) $solid circles% quantitatively $Ref. 16%.
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CuGeO3,21,22,23 two-leg spin ladder SrCu2O3,24 and in-
teracting dimer TlCuCl3.25 This shows that the phe-
nomenon, i.e., impurity-induced antiferromagnetic long-
range order in spin-gap materials, is universal as already
discussed briefly in Refs. 10, 26, 27 and 28.
We find another common feature in the lightly-doped

region. Small amount of impurities induce antiferromag-
netic long-range order and the transition temperature
does not decrease drastically in log-log scale, which is
shown in Fig. 11 (b), and this suggests no threshold
concentration in Pb(Ni1−xMx)2V2O8. The absence of
the threshold was also reported in Zn-doped CuGeO3 by
Manabe et al.29 They studied the T –x phase diagram in
low-concentration region and showed that the relation

TN = A exp

(

−
B

x

)

, (6)

holds in very low-temperature (T ! 8× 0.8 K) and low-
concentration (x ! 5× 10−3) region.
The unique feature in Pb(Ni1−xMx)2V2O8 is that the

transition temperatures drastically depend on the species
of the impurities. The maximum transition temperature
of Pb(Ni1−xCox)2V2O8 is more than 10 K, while that of
Pb(Ni1−xCux)2V2O8 is less than 1 K. Non-magnetic im-
purity Mg2+ induces lower transition temperature than
Co2+ but, somehow, higher temperature than Mn2+ or
Cu2+. The seemingly mysterious behavior can be ex-
plained by considering effective Hamiltonian in Eqs. (3)
and (4). The impurity dependence of the transition tem-
peratures will be semiquantitatively discussed in the fol-
lowing section.

IV. DISCUSSION

The low-temperature phase of Pb(Ni1−xCox)2V2O8

showed a hysteresis in the susceptibility vs temperature
curve and it was not a simple antiferromagnetic phase.
The low-temperature phase of Pb(Ni1−xCox)2V2O8 can
be attributed to the weak-ferromagnetic phase. The rea-
son for the occurrence of the weak-ferromagnetic phase
is due to the structure of PbNi2V2O8, where the Ni
chain (spin chain) is constructed as the four-fold screw
chain.30 The screw chain does not have an inversion cen-
ter between the neighboring Ni sites and therefore the
Dzyaloshinskii-Moriya (DM) interaction19,20 exists be-
tween the two neighboring spins. As is well known, DM
interaction can cause canting of the sublattice magnetiza-
tion of the antiferromagnetic phase and the state becomes
weak-ferromagnetic phase.
In Fig. 11 we see that the transition temperatures of

Pb(Ni1−xMx)2V2O8 differ much depending on the kind
of impurities M even though the qualitative behavior is
independent. The transition temperature is obtained as
the divergence of the staggered susceptibility but there
is no theoretical calculation for our specific case. How-
ever, it is possible to semiquantitatively explain the T –x
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FIG. 11: (a) Temperature vs impurity concentration (T–
x) phase diagram in impurity-doped Haldane material
PbNi2V2O8. (b) T–x phase diagram in the lightly doped
region, where the data are plotted in log-log scales.

phase diagram such as extremely low transition temper-
ature in Pb(Ni1−xCux)2V2O8 and very high transition
temperature in Pb(Ni1−xCox)2V2O8.
As was already mentioned, the low energy excitation

in the disordered state in a doped-Haldane chain is well
explained by the effective Hamiltonian in Eq. (2). For
the appearance of the ordered state in coupled-Haldane
chains, on the other hand, the interchain interaction must
be considered in addition. However, the consideration
of the effective Hamiltonian Eq. (2) which includes only
JNNN and JM would still be meaningful if we assume
that impurity doping does not affect the interchain in-
teraction. We could discuss the transition temperatures
in PbNi2V2O8 doped with various impurities by calcu-
lating the ground state energy in effective Hamiltonian
Eqs. (3) and (4), and also by calculating the energy in
local collinear spin structure; parallel in Fig. 1 (b) or
antiparallel in Fig. 1 (c).
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SINGLE IMPURITY PHYSICS



๏ A non-magnetic impurity breaks a 
singlet and releases a spin S=1/2, 
confined in the vicinity of the impurity
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๏ A non-magnetic impurity breaks a 
singlet and releases a spin S=1/2, 
confined in the vicinity of the impurity
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๏ Clearly visible in NMR spectra
Zn-substituted Haldane chains 
 .YBa2Ni1−xZnxO5

See: Tedoldi  et al.  PRL 1999
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๏ Average 3D coupling
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FIG. 3: (Color online). Muon polarization for BCPO above
and below Tg (black circles) on upper and left axis is com-
pared to a similar experiment made in SrCu2O3 (bottom axis
being rescaled, right axis is slightly shifted because of a dif-
ferent background) from Ref. 27. Grey line is a fit to Eq.3 of
Ref. 27 as explained in the text.

used. Muons which carry a spin 1/2 are implanted in
the samples and precess around the local magnetic field.
This precession is measured through the detection of the
asymmetry of the positron emission due to the muon de-
cay. In the absence of an external magnetic field (”zero
field setup”), above Tg, only the tiny nuclear spin dipo-
lar fields are experienced by the muons. This results in
a gaussian field distribution and a very slowly-decaying
”Kubo-Toyabe” polarization as displayed in Fig. 3 at
T=10K. When the electronic spins start to freeze be-
low Tg, their randomly oriented static moments result
in a much larger field distribution and a much faster de-
caying asymmetry as shown in Fig. 3 at T=1.6 K. We
checked that this depolarization is of static origin below
Tg by applying a large longitudinal field and finding the
expected asymmetry decoupling. Since no marked oscil-
lations are observed, the corresponding field distribution
is not that of a simple commensurate magnetic ordering.
However, due to the lack of a dip in the asymmetry, it is
probably not completely random as in a spin glass, but
more likely in an intermediate situation with AF clusters,
as discussed in Ref. 27. To get an estimate of the field
distribution, we used the same phenomenological expo-
nential field distribution as in Ref. 27, which fits well the
data as shown in Fig. 3. The resulting static field distri-
bution develops as a mere order parameter which allows
to determine Tg. Whatever the impurity nature or con-
centration, the transition temperature is proportional to
the field distribution even for very large impurity con-
centrations.

The SrCu2O3 ladder shows similar time dependence
for the muon polarization as displayed in Fig. 3 [27].
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FIG. 4: (Color online) Left panel: transition temperatures
versus impurity concentration for various low-D spin-gapped
systems: coupled ladders Bi(Cu1�x(Zn or Ni)x)2PO6 from
this study; isolated ladder Sr(Cu1�x(Zn or Ni)x)2O3 [4] [18];
Haldane chain Pb(Ni1�xMgx)2V2O8 [31]; spin-Peierls chains
Cu1�x(Zn or Ni)xGeO3 [8]. Full and open symbols corre-
spond respectively to non magnetic and magnetic impurities.
Right panel: Same data where Tg is rescaled by its value at
x=3%.

Both the static field distribution and Tg [4] are found 1.7
times larger than in BCPO. This 1.7 ratio is unexpect-
edly about one order of magnitude smaller than the ratio
between the ladder couplings. Other low-D spin gap sys-
tems such as Haldane chains or Spin-Peierls chains also
display very similar Tg despite their di↵erent geometries
and gap values (Fig. 4). The dependence on impurity
content also shows a strikingly generic behavior, with a
similar departure from a linear behaviour at about 2-3%
for all compounds as demonstrated in the right panel of
Fig. 4. Magnetic impurities in these materials also lead
to similar Tg and similar concentration dependence as
shown in Fig. 4.

Despite several theoretical investigations devoted to
understand the origin of the impurity-induced 3D or-
dering in low-D gapped systems [15, 17, 19, 29, 30], no
common framework has emerged so far which explains
this generic Tg behavior. The collective freezing of the
e↵ective moments (having a 3D extension ⇠ ⇠x⇠y⇠z at
T > Tg) is actually controlled by the exponentially de-
caying 3D coupling of the general form
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expected to occur for the wide class of spin gapped ma-
terials [14, 15, 16, 17, 32, 33]. Couplings in the three
directions are necessary to allow finite-T ordering due to
the Mermin-Wagner theorem, and J3D is the weakest of
these couplings. The typical coupling Jtyp = |J

e↵
3D(hri)|,

taken at the average distance hri between impurities, is
much too small to explain the actual 3D freezing temper-
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Tg by applying a large longitudinal field and finding the
expected asymmetry decoupling. Since no marked oscil-
lations are observed, the corresponding field distribution
is not that of a simple commensurate magnetic ordering.
However, due to the lack of a dip in the asymmetry, it is
probably not completely random as in a spin glass, but
more likely in an intermediate situation with AF clusters,
as discussed in Ref. 27. To get an estimate of the field
distribution, we used the same phenomenological expo-
nential field distribution as in Ref. 27, which fits well the
data as shown in Fig. 3. The resulting static field distri-
bution develops as a mere order parameter which allows
to determine Tg. Whatever the impurity nature or con-
centration, the transition temperature is proportional to
the field distribution even for very large impurity con-
centrations.
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for the muon polarization as displayed in Fig. 3 [27].
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Both the static field distribution and Tg [4] are found 1.7
times larger than in BCPO. This 1.7 ratio is unexpect-
edly about one order of magnitude smaller than the ratio
between the ladder couplings. Other low-D spin gap sys-
tems such as Haldane chains or Spin-Peierls chains also
display very similar Tg despite their di↵erent geometries
and gap values (Fig. 4). The dependence on impurity
content also shows a strikingly generic behavior, with a
similar departure from a linear behaviour at about 2-3%
for all compounds as demonstrated in the right panel of
Fig. 4. Magnetic impurities in these materials also lead
to similar Tg and similar concentration dependence as
shown in Fig. 4.

Despite several theoretical investigations devoted to
understand the origin of the impurity-induced 3D or-
dering in low-D gapped systems [15, 17, 19, 29, 30], no
common framework has emerged so far which explains
this generic Tg behavior. The collective freezing of the
e↵ective moments (having a 3D extension ⇠ ⇠x⇠y⇠z at
T > Tg) is actually controlled by the exponentially de-
caying 3D coupling of the general form
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data of Fig. 2 are also shown for comparison.
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FIG. 3: (Color online). Muon polarization for BCPO above
and below Tg (black circles) on upper and left axis is com-
pared to a similar experiment made in SrCu2O3 (bottom axis
being rescaled, right axis is slightly shifted because of a dif-
ferent background) from Ref. 27. Grey line is a fit to Eq.3 of
Ref. 27 as explained in the text.

used. Muons which carry a spin 1/2 are implanted in
the samples and precess around the local magnetic field.
This precession is measured through the detection of the
asymmetry of the positron emission due to the muon de-
cay. In the absence of an external magnetic field (”zero
field setup”), above Tg, only the tiny nuclear spin dipo-
lar fields are experienced by the muons. This results in
a gaussian field distribution and a very slowly-decaying
”Kubo-Toyabe” polarization as displayed in Fig. 3 at
T=10K. When the electronic spins start to freeze be-
low Tg, their randomly oriented static moments result
in a much larger field distribution and a much faster de-
caying asymmetry as shown in Fig. 3 at T=1.6 K. We
checked that this depolarization is of static origin below
Tg by applying a large longitudinal field and finding the
expected asymmetry decoupling. Since no marked oscil-
lations are observed, the corresponding field distribution
is not that of a simple commensurate magnetic ordering.
However, due to the lack of a dip in the asymmetry, it is
probably not completely random as in a spin glass, but
more likely in an intermediate situation with AF clusters,
as discussed in Ref. 27. To get an estimate of the field
distribution, we used the same phenomenological expo-
nential field distribution as in Ref. 27, which fits well the
data as shown in Fig. 3. The resulting static field distri-
bution develops as a mere order parameter which allows
to determine Tg. Whatever the impurity nature or con-
centration, the transition temperature is proportional to
the field distribution even for very large impurity con-
centrations.

The SrCu2O3 ladder shows similar time dependence
for the muon polarization as displayed in Fig. 3 [27].
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FIG. 4: (Color online) Left panel: transition temperatures
versus impurity concentration for various low-D spin-gapped
systems: coupled ladders Bi(Cu1�x(Zn or Ni)x)2PO6 from
this study; isolated ladder Sr(Cu1�x(Zn or Ni)x)2O3 [4] [18];
Haldane chain Pb(Ni1�xMgx)2V2O8 [31]; spin-Peierls chains
Cu1�x(Zn or Ni)xGeO3 [8]. Full and open symbols corre-
spond respectively to non magnetic and magnetic impurities.
Right panel: Same data where Tg is rescaled by its value at
x=3%.

Both the static field distribution and Tg [4] are found 1.7
times larger than in BCPO. This 1.7 ratio is unexpect-
edly about one order of magnitude smaller than the ratio
between the ladder couplings. Other low-D spin gap sys-
tems such as Haldane chains or Spin-Peierls chains also
display very similar Tg despite their di↵erent geometries
and gap values (Fig. 4). The dependence on impurity
content also shows a strikingly generic behavior, with a
similar departure from a linear behaviour at about 2-3%
for all compounds as demonstrated in the right panel of
Fig. 4. Magnetic impurities in these materials also lead
to similar Tg and similar concentration dependence as
shown in Fig. 4.

Despite several theoretical investigations devoted to
understand the origin of the impurity-induced 3D or-
dering in low-D gapped systems [15, 17, 19, 29, 30], no
common framework has emerged so far which explains
this generic Tg behavior. The collective freezing of the
e↵ective moments (having a 3D extension ⇠ ⇠x⇠y⇠z at
T > Tg) is actually controlled by the exponentially de-
caying 3D coupling of the general form
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expected to occur for the wide class of spin gapped ma-
terials [14, 15, 16, 17, 32, 33]. Couplings in the three
directions are necessary to allow finite-T ordering due to
the Mermin-Wagner theorem, and J3D is the weakest of
these couplings. The typical coupling Jtyp = |J

e↵
3D(hri)|,

taken at the average distance hri between impurities, is
much too small to explain the actual 3D freezing temper-
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lations are observed, the corresponding field distribution
is not that of a simple commensurate magnetic ordering.
However, due to the lack of a dip in the asymmetry, it is
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more likely in an intermediate situation with AF clusters,
as discussed in Ref. 27. To get an estimate of the field
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nential field distribution as in Ref. 27, which fits well the
data as shown in Fig. 3. The resulting static field distri-
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centrations.
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Both the static field distribution and Tg [4] are found 1.7
times larger than in BCPO. This 1.7 ratio is unexpect-
edly about one order of magnitude smaller than the ratio
between the ladder couplings. Other low-D spin gap sys-
tems such as Haldane chains or Spin-Peierls chains also
display very similar Tg despite their di↵erent geometries
and gap values (Fig. 4). The dependence on impurity
content also shows a strikingly generic behavior, with a
similar departure from a linear behaviour at about 2-3%
for all compounds as demonstrated in the right panel of
Fig. 4. Magnetic impurities in these materials also lead
to similar Tg and similar concentration dependence as
shown in Fig. 4.

Despite several theoretical investigations devoted to
understand the origin of the impurity-induced 3D or-
dering in low-D gapped systems [15, 17, 19, 29, 30], no
common framework has emerged so far which explains
this generic Tg behavior. The collective freezing of the
e↵ective moments (having a 3D extension ⇠ ⇠x⇠y⇠z at
T > Tg) is actually controlled by the exponentially de-
caying 3D coupling of the general form
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ticles that are supposed to condense poorly defined. Thus,
any physics related to the BEC transition is wiped out. With
this in mind, in the present study we adopted a radically
different “softer” method. Quenched disorder was introduced
in IPA-CuCl3 by a partial substitution of nonmagnetic Br−

for the likewise nonmagnetic Cl−.10 This modification does
not directly involve the spin-carrying Cu2+ ions and does not
add additional anisotropy term. Instead it affects the bond
angles in the Cu-halogen-halogen-Cu superexchange path-
ways. The strength of magnetic interactions on the affected
bonds is thereby modified, but their AF character is pre-
served.

IPA-Cu!Cl0.95Br0.05"3 single crystals were grown in solu-
tion as described in Ref. 11. The microscopic homogeniety
of Br distribution was confirmed by single-crystal x-ray dif-
fraction studies, that also confirmed the Br content to be
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flow cryostat with a Be neutron filter after the sample and
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shown in Fig. 1 was measured at T=1.5 K and reveals well-
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knowing our energy resolution, we can estimate the intrinsic
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In external magnetic fields exceeding Hc#10 T,
IPA-Cu!Cl0.95Br0.05"3 becomes magnetized $Fig. 2!a",
circles%.10 The magnetization derivative does not jump
abruptly, as in IPA-CuCl3 under similar conditions $Fig. 2!a",
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FIG. 1. !Color online" The excitation spectrum !false color plot"
measured in IPA-Cu!Cl0.95Br0.05"3 at T=1.5 K in zero applied field
reveals sharp dispersive quasiparticles with an energy gap "
=1.24!1" meV. A typical energy scan !left panel, symbols" shows a
well-defined peak with an energy width entirely due to experimental
resolution !solid line, calculation".

FIG. 2. !Color online" Signatures of various quantum phases in
IPA-Cu!Cl0.95Br0.05"3. The uniform magnetization !a, circles, from
Ref. 10" represents the density of bosons in the ground state. The
rate of increase in uniform magnetization is the boson compress-
ibility !a, squares". The thin solid lines correspond to the disorder-
free parent compound IPA-CuCl3. !b" The magnetic Bragg intensity
measured at the maximum represents the effective BEC order pa-
rameter. The measured temperature dependence of H! is shown in
the inset. The solid curve is a guide for the eyes.

HONG et al. PHYSICAL REVIEW B 81, 060410!R" !2010"

RAPID COMMUNICATIONS

060410-2

Evidence of a magnetic Bose glass in (CH3)2CHNH3Cu(Cl{0.95}Br{0.05})3 from neutron diffraction

Tao Hong,1 A. Zheludev,2,3,* H. Manaka,4 and L.-P. Regnault5
1Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

2Laboratorium für Festkörperphysik, ETH Zürich, Zürich CH-8093, Switzerland
3Laboratory for Neutron Scattering, ETH Zürich and Paul Scherrer Institute, Villigen PSI CH-5232, Switzerland

4Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
5INAC-SPSMS-MDN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

!Received 4 January 2010; published 19 February 2010"

We report the single-crystal study of the bulk magnetization and neutron-scattering measurements on a
quantum S=1 /2 spin ladders system IPA-Cu!Cl0.95Br0.05"3 with quenched disorder. In zero field, the disordered
spin liquid phase is preserved as in pure IPA-CuCl3. Due to the bond randomness, a different Bose glass phase
was directly observed in Hc!H!H!, which separates the spin liquid phase from the unconventional Bose-
Einstein condensation phase. The observed finite value of boson compressibility !dM /dH" and lack of field-
induced three-dimensional long-range order are consistent with the theoretical prediction.

DOI: 10.1103/PhysRevB.81.060410 PACS number!s": 75.10.Jm, 05.30.Jp, 71.27."a

A “Bose glass” !BG" is an exotic state of matter that
emerges in systems of interacting bosons in the presence of
quenched disorder. At sufficiently low temperatures,
disorder-free bosons are subject to so-called Bose-Einstein
condensation !BEC". BEC can involve atoms in liquid 4He,1

laser-cooled ions in magnetic traps,2 Cooper pairs in
superconductors,3 or magnons in magnetic systems.4 Due to
peculiarities of Bose statistics, particles lose their individu-
ality and occupy a unique quantum-mechanical state. The
wave function of this condensate establishes long-range
quantum phase coherence across a macroscopic sample. For
repulsive bosons, quenched disorder disrupts the condensate
and interferes with phase coherence. The result is a peculiar
glassy state with only short-range phase correlations.5,6

While some experimental evidence of this was found in ul-
tracold atoms,7 high-temperature superconductors,8 and
quantum magnets,9,10 none of the studies were direct. The
key characteristic, namely the wave function of the conden-
sate disrupted by disorder on the microscopic scale, re-
mained inaccessible. In this Rapid Communication, we re-
port a direct neutron-diffraction observation of short-range
correlations of the BEC order parameter in a magnetic BG.
This phase is realized in the quantum spin ladder compound
IPA-Cu!Cl0.95Br0.05"3, where disorder is induced by random
chemical substitution.11

The disorder-free parent compound IPA-CuCl3 is a proto-
typical S=1 /2 antiferromagnetic !AF" spin ladder material
with the ladders running along the a axis of the crystal.12,13

Nearest-neighbor spin interactions along the legs of each lad-
der are AF. Nearest-neighbor interleg correlations are ferro-
magnetic !FM". However, interleg coupling is dominated by
next-nearest-neighbor interactions. These are formed by Cu-
Cl-Cl-Cu superexchange pathways, and are robustly AF. As
discussed in Ref. 13, magnetic anisotropy in this material is
negligible. Zero-point quantum spin fluctuations in such
Heisenberg ladder structures destroy conventional magnetic
order. The result is a nonmagnetic “spin liquid” state. The
lowest-energy excitations are a triplet of long-lived S=1 qua-
siparticles with a minimum excitation energy #. For
IPA-CuCl3, this energy gap is #=1.17 meV.12 The quasipar-

ticles obey Bose statistics, and are mutually repulsive at
short distances. Since the energy cost of creating each qua-
siparticle is at least #, the ground state is a vacuum of
bosons. The vacuum persists in modest applied magnetic
fields. However, due to Zeeman effect, the gap in the Sz
=+1 magnon decreases linearly with increasing field H, and
reaches zero at Hc=# / !g$B". For IPA-CuCl3, Hc=9.7 T.14

Once H%Hc, the quasiparticle energy becomes negative, and
macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
to the impurity concentration.19 These free spins are the
dominant contribution to bulk magnetization, give rise to a
divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
impurity becomes a potent scattering center. This causes a
collision damping of magnons,21 making the very quasipar-
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disorder-free bosons are subject to so-called Bose-Einstein
condensation !BEC". BEC can involve atoms in liquid 4He,1

laser-cooled ions in magnetic traps,2 Cooper pairs in
superconductors,3 or magnons in magnetic systems.4 Due to
peculiarities of Bose statistics, particles lose their individu-
ality and occupy a unique quantum-mechanical state. The
wave function of this condensate establishes long-range
quantum phase coherence across a macroscopic sample. For
repulsive bosons, quenched disorder disrupts the condensate
and interferes with phase coherence. The result is a peculiar
glassy state with only short-range phase correlations.5,6

While some experimental evidence of this was found in ul-
tracold atoms,7 high-temperature superconductors,8 and
quantum magnets,9,10 none of the studies were direct. The
key characteristic, namely the wave function of the conden-
sate disrupted by disorder on the microscopic scale, re-
mained inaccessible. In this Rapid Communication, we re-
port a direct neutron-diffraction observation of short-range
correlations of the BEC order parameter in a magnetic BG.
This phase is realized in the quantum spin ladder compound
IPA-Cu!Cl0.95Br0.05"3, where disorder is induced by random
chemical substitution.11

The disorder-free parent compound IPA-CuCl3 is a proto-
typical S=1 /2 antiferromagnetic !AF" spin ladder material
with the ladders running along the a axis of the crystal.12,13

Nearest-neighbor spin interactions along the legs of each lad-
der are AF. Nearest-neighbor interleg correlations are ferro-
magnetic !FM". However, interleg coupling is dominated by
next-nearest-neighbor interactions. These are formed by Cu-
Cl-Cl-Cu superexchange pathways, and are robustly AF. As
discussed in Ref. 13, magnetic anisotropy in this material is
negligible. Zero-point quantum spin fluctuations in such
Heisenberg ladder structures destroy conventional magnetic
order. The result is a nonmagnetic “spin liquid” state. The
lowest-energy excitations are a triplet of long-lived S=1 qua-
siparticles with a minimum excitation energy #. For
IPA-CuCl3, this energy gap is #=1.17 meV.12 The quasipar-

ticles obey Bose statistics, and are mutually repulsive at
short distances. Since the energy cost of creating each qua-
siparticle is at least #, the ground state is a vacuum of
bosons. The vacuum persists in modest applied magnetic
fields. However, due to Zeeman effect, the gap in the Sz
=+1 magnon decreases linearly with increasing field H, and
reaches zero at Hc=# / !g$B". For IPA-CuCl3, Hc=9.7 T.14

Once H%Hc, the quasiparticle energy becomes negative, and
macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
to the impurity concentration.19 These free spins are the
dominant contribution to bulk magnetization, give rise to a
divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
impurity becomes a potent scattering center. This causes a
collision damping of magnons,21 making the very quasipar-
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disorder-free bosons are subject to so-called Bose-Einstein
condensation !BEC". BEC can involve atoms in liquid 4He,1

laser-cooled ions in magnetic traps,2 Cooper pairs in
superconductors,3 or magnons in magnetic systems.4 Due to
peculiarities of Bose statistics, particles lose their individu-
ality and occupy a unique quantum-mechanical state. The
wave function of this condensate establishes long-range
quantum phase coherence across a macroscopic sample. For
repulsive bosons, quenched disorder disrupts the condensate
and interferes with phase coherence. The result is a peculiar
glassy state with only short-range phase correlations.5,6

While some experimental evidence of this was found in ul-
tracold atoms,7 high-temperature superconductors,8 and
quantum magnets,9,10 none of the studies were direct. The
key characteristic, namely the wave function of the conden-
sate disrupted by disorder on the microscopic scale, re-
mained inaccessible. In this Rapid Communication, we re-
port a direct neutron-diffraction observation of short-range
correlations of the BEC order parameter in a magnetic BG.
This phase is realized in the quantum spin ladder compound
IPA-Cu!Cl0.95Br0.05"3, where disorder is induced by random
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The disorder-free parent compound IPA-CuCl3 is a proto-
typical S=1 /2 antiferromagnetic !AF" spin ladder material
with the ladders running along the a axis of the crystal.12,13

Nearest-neighbor spin interactions along the legs of each lad-
der are AF. Nearest-neighbor interleg correlations are ferro-
magnetic !FM". However, interleg coupling is dominated by
next-nearest-neighbor interactions. These are formed by Cu-
Cl-Cl-Cu superexchange pathways, and are robustly AF. As
discussed in Ref. 13, magnetic anisotropy in this material is
negligible. Zero-point quantum spin fluctuations in such
Heisenberg ladder structures destroy conventional magnetic
order. The result is a nonmagnetic “spin liquid” state. The
lowest-energy excitations are a triplet of long-lived S=1 qua-
siparticles with a minimum excitation energy #. For
IPA-CuCl3, this energy gap is #=1.17 meV.12 The quasipar-

ticles obey Bose statistics, and are mutually repulsive at
short distances. Since the energy cost of creating each qua-
siparticle is at least #, the ground state is a vacuum of
bosons. The vacuum persists in modest applied magnetic
fields. However, due to Zeeman effect, the gap in the Sz
=+1 magnon decreases linearly with increasing field H, and
reaches zero at Hc=# / !g$B". For IPA-CuCl3, Hc=9.7 T.14

Once H%Hc, the quasiparticle energy becomes negative, and
macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
to the impurity concentration.19 These free spins are the
dominant contribution to bulk magnetization, give rise to a
divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
impurity becomes a potent scattering center. This causes a
collision damping of magnons,21 making the very quasipar-
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in complex form '= #Sx$+ i#Sy$, is the effective wave func-
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where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
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ies targeted the magnetic ions, randomly substituting them
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with this approach is that it qualitatively alters the nature of
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=1 /2 degrees of freedom are liberated in direct proportion
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BOSE-GLASS PHYSICS IN QUANTUM MAGNETS: ONLY A FEW EXAMPLES

ticles that are supposed to condense poorly defined. Thus,
any physics related to the BEC transition is wiped out. With
this in mind, in the present study we adopted a radically
different “softer” method. Quenched disorder was introduced
in IPA-CuCl3 by a partial substitution of nonmagnetic Br−

for the likewise nonmagnetic Cl−.10 This modification does
not directly involve the spin-carrying Cu2+ ions and does not
add additional anisotropy term. Instead it affects the bond
angles in the Cu-halogen-halogen-Cu superexchange path-
ways. The strength of magnetic interactions on the affected
bonds is thereby modified, but their AF character is pre-
served.

IPA-Cu!Cl0.95Br0.05"3 single crystals were grown in solu-
tion as described in Ref. 11. The microscopic homogeniety
of Br distribution was confirmed by single-crystal x-ray dif-
fraction studies, that also confirmed the Br content to be
within 10% of nominal. Bulk magnetization data were taken
at T=500 mK. The magnetic field was applied along the c
axis of the crystal.10 Neutron experiments were carried out in
the !h ,k ,0" scattering plane on an assembly of five fully
deuterated crystals with a total mass of 0.8 g and a mosaic
spread of 0.7°. Inelastic measurements were performed on
IN22 three-axis spectrometer at ILL using a standard He-
flow cryostat with a Be neutron filter after the sample and
fixed final neutron energy Ef =5 meV. High-field diffraction
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neutron-scattering experiments. The excitation spectrum
shown in Fig. 1 was measured at T=1.5 K and reveals well-
defined bosonic quasiparticles with a spin gap "
=1.24!1" meV. Just like in the pure IPA-CuCl3 !Ref. 12"
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In external magnetic fields exceeding Hc#10 T,
IPA-Cu!Cl0.95Br0.05"3 becomes magnetized $Fig. 2!a",
circles%.10 The magnetization derivative does not jump
abruptly, as in IPA-CuCl3 under similar conditions $Fig. 2!a",
solid curves%. Instead, it gradually increases between Hc and

FIG. 1. !Color online" The excitation spectrum !false color plot"
measured in IPA-Cu!Cl0.95Br0.05"3 at T=1.5 K in zero applied field
reveals sharp dispersive quasiparticles with an energy gap "
=1.24!1" meV. A typical energy scan !left panel, symbols" shows a
well-defined peak with an energy width entirely due to experimental
resolution !solid line, calculation".

FIG. 2. !Color online" Signatures of various quantum phases in
IPA-Cu!Cl0.95Br0.05"3. The uniform magnetization !a, circles, from
Ref. 10" represents the density of bosons in the ground state. The
rate of increase in uniform magnetization is the boson compress-
ibility !a, squares". The thin solid lines correspond to the disorder-
free parent compound IPA-CuCl3. !b" The magnetic Bragg intensity
measured at the maximum represents the effective BEC order pa-
rameter. The measured temperature dependence of H! is shown in
the inset. The solid curve is a guide for the eyes.
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A “Bose glass” !BG" is an exotic state of matter that
emerges in systems of interacting bosons in the presence of
quenched disorder. At sufficiently low temperatures,
disorder-free bosons are subject to so-called Bose-Einstein
condensation !BEC". BEC can involve atoms in liquid 4He,1

laser-cooled ions in magnetic traps,2 Cooper pairs in
superconductors,3 or magnons in magnetic systems.4 Due to
peculiarities of Bose statistics, particles lose their individu-
ality and occupy a unique quantum-mechanical state. The
wave function of this condensate establishes long-range
quantum phase coherence across a macroscopic sample. For
repulsive bosons, quenched disorder disrupts the condensate
and interferes with phase coherence. The result is a peculiar
glassy state with only short-range phase correlations.5,6

While some experimental evidence of this was found in ul-
tracold atoms,7 high-temperature superconductors,8 and
quantum magnets,9,10 none of the studies were direct. The
key characteristic, namely the wave function of the conden-
sate disrupted by disorder on the microscopic scale, re-
mained inaccessible. In this Rapid Communication, we re-
port a direct neutron-diffraction observation of short-range
correlations of the BEC order parameter in a magnetic BG.
This phase is realized in the quantum spin ladder compound
IPA-Cu!Cl0.95Br0.05"3, where disorder is induced by random
chemical substitution.11

The disorder-free parent compound IPA-CuCl3 is a proto-
typical S=1 /2 antiferromagnetic !AF" spin ladder material
with the ladders running along the a axis of the crystal.12,13

Nearest-neighbor spin interactions along the legs of each lad-
der are AF. Nearest-neighbor interleg correlations are ferro-
magnetic !FM". However, interleg coupling is dominated by
next-nearest-neighbor interactions. These are formed by Cu-
Cl-Cl-Cu superexchange pathways, and are robustly AF. As
discussed in Ref. 13, magnetic anisotropy in this material is
negligible. Zero-point quantum spin fluctuations in such
Heisenberg ladder structures destroy conventional magnetic
order. The result is a nonmagnetic “spin liquid” state. The
lowest-energy excitations are a triplet of long-lived S=1 qua-
siparticles with a minimum excitation energy #. For
IPA-CuCl3, this energy gap is #=1.17 meV.12 The quasipar-

ticles obey Bose statistics, and are mutually repulsive at
short distances. Since the energy cost of creating each qua-
siparticle is at least #, the ground state is a vacuum of
bosons. The vacuum persists in modest applied magnetic
fields. However, due to Zeeman effect, the gap in the Sz
=+1 magnon decreases linearly with increasing field H, and
reaches zero at Hc=# / !g$B". For IPA-CuCl3, Hc=9.7 T.14

Once H%Hc, the quasiparticle energy becomes negative, and
macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
to the impurity concentration.19 These free spins are the
dominant contribution to bulk magnetization, give rise to a
divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
impurity becomes a potent scattering center. This causes a
collision damping of magnons,21 making the very quasipar-
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disorder-free bosons are subject to so-called Bose-Einstein
condensation !BEC". BEC can involve atoms in liquid 4He,1

laser-cooled ions in magnetic traps,2 Cooper pairs in
superconductors,3 or magnons in magnetic systems.4 Due to
peculiarities of Bose statistics, particles lose their individu-
ality and occupy a unique quantum-mechanical state. The
wave function of this condensate establishes long-range
quantum phase coherence across a macroscopic sample. For
repulsive bosons, quenched disorder disrupts the condensate
and interferes with phase coherence. The result is a peculiar
glassy state with only short-range phase correlations.5,6

While some experimental evidence of this was found in ul-
tracold atoms,7 high-temperature superconductors,8 and
quantum magnets,9,10 none of the studies were direct. The
key characteristic, namely the wave function of the conden-
sate disrupted by disorder on the microscopic scale, re-
mained inaccessible. In this Rapid Communication, we re-
port a direct neutron-diffraction observation of short-range
correlations of the BEC order parameter in a magnetic BG.
This phase is realized in the quantum spin ladder compound
IPA-Cu!Cl0.95Br0.05"3, where disorder is induced by random
chemical substitution.11

The disorder-free parent compound IPA-CuCl3 is a proto-
typical S=1 /2 antiferromagnetic !AF" spin ladder material
with the ladders running along the a axis of the crystal.12,13

Nearest-neighbor spin interactions along the legs of each lad-
der are AF. Nearest-neighbor interleg correlations are ferro-
magnetic !FM". However, interleg coupling is dominated by
next-nearest-neighbor interactions. These are formed by Cu-
Cl-Cl-Cu superexchange pathways, and are robustly AF. As
discussed in Ref. 13, magnetic anisotropy in this material is
negligible. Zero-point quantum spin fluctuations in such
Heisenberg ladder structures destroy conventional magnetic
order. The result is a nonmagnetic “spin liquid” state. The
lowest-energy excitations are a triplet of long-lived S=1 qua-
siparticles with a minimum excitation energy #. For
IPA-CuCl3, this energy gap is #=1.17 meV.12 The quasipar-

ticles obey Bose statistics, and are mutually repulsive at
short distances. Since the energy cost of creating each qua-
siparticle is at least #, the ground state is a vacuum of
bosons. The vacuum persists in modest applied magnetic
fields. However, due to Zeeman effect, the gap in the Sz
=+1 magnon decreases linearly with increasing field H, and
reaches zero at Hc=# / !g$B". For IPA-CuCl3, Hc=9.7 T.14

Once H%Hc, the quasiparticle energy becomes negative, and
macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
to the impurity concentration.19 These free spins are the
dominant contribution to bulk magnetization, give rise to a
divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
impurity becomes a potent scattering center. This causes a
collision damping of magnons,21 making the very quasipar-
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A “Bose glass” !BG" is an exotic state of matter that
emerges in systems of interacting bosons in the presence of
quenched disorder. At sufficiently low temperatures,
disorder-free bosons are subject to so-called Bose-Einstein
condensation !BEC". BEC can involve atoms in liquid 4He,1

laser-cooled ions in magnetic traps,2 Cooper pairs in
superconductors,3 or magnons in magnetic systems.4 Due to
peculiarities of Bose statistics, particles lose their individu-
ality and occupy a unique quantum-mechanical state. The
wave function of this condensate establishes long-range
quantum phase coherence across a macroscopic sample. For
repulsive bosons, quenched disorder disrupts the condensate
and interferes with phase coherence. The result is a peculiar
glassy state with only short-range phase correlations.5,6

While some experimental evidence of this was found in ul-
tracold atoms,7 high-temperature superconductors,8 and
quantum magnets,9,10 none of the studies were direct. The
key characteristic, namely the wave function of the conden-
sate disrupted by disorder on the microscopic scale, re-
mained inaccessible. In this Rapid Communication, we re-
port a direct neutron-diffraction observation of short-range
correlations of the BEC order parameter in a magnetic BG.
This phase is realized in the quantum spin ladder compound
IPA-Cu!Cl0.95Br0.05"3, where disorder is induced by random
chemical substitution.11

The disorder-free parent compound IPA-CuCl3 is a proto-
typical S=1 /2 antiferromagnetic !AF" spin ladder material
with the ladders running along the a axis of the crystal.12,13

Nearest-neighbor spin interactions along the legs of each lad-
der are AF. Nearest-neighbor interleg correlations are ferro-
magnetic !FM". However, interleg coupling is dominated by
next-nearest-neighbor interactions. These are formed by Cu-
Cl-Cl-Cu superexchange pathways, and are robustly AF. As
discussed in Ref. 13, magnetic anisotropy in this material is
negligible. Zero-point quantum spin fluctuations in such
Heisenberg ladder structures destroy conventional magnetic
order. The result is a nonmagnetic “spin liquid” state. The
lowest-energy excitations are a triplet of long-lived S=1 qua-
siparticles with a minimum excitation energy #. For
IPA-CuCl3, this energy gap is #=1.17 meV.12 The quasipar-

ticles obey Bose statistics, and are mutually repulsive at
short distances. Since the energy cost of creating each qua-
siparticle is at least #, the ground state is a vacuum of
bosons. The vacuum persists in modest applied magnetic
fields. However, due to Zeeman effect, the gap in the Sz
=+1 magnon decreases linearly with increasing field H, and
reaches zero at Hc=# / !g$B". For IPA-CuCl3, Hc=9.7 T.14

Once H%Hc, the quasiparticle energy becomes negative, and
macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
to the impurity concentration.19 These free spins are the
dominant contribution to bulk magnetization, give rise to a
divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
impurity becomes a potent scattering center. This causes a
collision damping of magnons,21 making the very quasipar-
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macroscopic number of them are incorporated in the ground
state. Since each carries a spin projection Sz=+1, their den-
sity is equal to the uniform magnetization: #&$=m%#Sz$. Si-
multaneously, the emerging bosons undergo magnon
BEC.4,15 The signature of this quantum phase transition is the
appearance of spontaneous long-range staggered !AF" mag-
netic order of spin components perpendicular to the direc-
tion of applied field. This transverse magnetization, written
in complex form '= #Sx$+ i#Sy$, is the effective wave func-
tion of the Bose condensate. In IPA-CuCl3 it was previously
directly probed by means of magnetic neutron diffraction,
where the measured scattering intensity is proportional to the
Fourier transform of the spin-correlation function.13,16 The
BEC phase is characterized by a new set of magnetic Bragg
peaks with half-integer Miller indexes. Their intensity is pro-
portional to the square of the BEC order parameter. Note that
in other experimental realizations of BEC of magnons, such
as that in thin films17 or 3He,18 the condensate wave function
remains experimentally inaccessible.

The best way to introduce quenched disorder in a mag-
netic system is by chemical substitution. Most previous stud-
ies targeted the magnetic ions, randomly substituting them
by nonmagnetic or different spin impurities. The problem
with this approach is that it qualitatively alters the nature of
the spin liquid state. Upon substitution, local S
=1 /2 degrees of freedom are liberated in direct proportion
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divergent magnetic susceptibility, and enable conventional
long-range ordering at low temperatures.20 In addition, each
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in

BEC

BG

BG

MG

a

x = 0.08

0 2 4 6 8 10 12 14 16 18
H (T)

0

0.2

0.4

0.6

0.8

1

1.2

T 
(K

) 

a.c. susc. kink
d.c. susc. kink
CV peak
QMC

MI

0 5 10 15
H (T)

0.2

0.4

0.6

0.8

1

1.2

BEC

MI MI

x = 0
b

0

Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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Bose glass and Mott glass of quasiparticles
in a doped quantum magnet
Rong Yu1, Liang Yin2, Neil S. Sullivan2, J. S. Xia2, Chao Huan2, Armando Paduan-Filho3, Nei F. Oliveira Jr3, Stephan Haas4,
Alexander Steppke5, Corneliu F. Miclea6,7, Franziska Weickert6, Roman Movshovich6, Eun-Deok Mun6, Brian L. Scott6,
Vivien S. Zapf6 & Tommaso Roscilde8

The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the
best-known examples are Bose–Einstein condensation and superfluidity, which have been tested experimentally in a
variety of different systems. When bosons interact, disorder can destroy condensation, leading to a ‘Bose glass’. This
phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous
absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic
quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of
DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping
introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass
down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a
gapless spin liquid) to the Bose–Einstein condensate (corresponding to a magnetically ordered phase) is marked by a
universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement
with theoretical predictions. Our study represents a quantitative experimental account of the universal features of
disordered bosons in the grand canonical ensemble.

Disorder can have a very strong effect on quantum fluids. Owing to
their wave-like nature, quantum particles are subject to interference
when scattering against disordered potentials. This leads to their
quantum localization (or Anderson localization), which prevents—
for example—electrons from conducting electrical currents in
strongly disordered metals1, and non-interacting bosons from con-
densing into a zero-momentum state2. Yet interacting bosons repres-
ent a matter wave with arbitrarily strong nonlinearity, whose
localization properties in a random environment cannot be deduced
from the standard theory of Anderson localization. It has been pre-
dicted3,4 that for strongly interacting bosons, Anderson localization
manifests itself in the Bose glass: in this phase, the collective modes of
the system—and not the individual particles—are Anderson-localized
over arbitrarily large regions, leading to a gapless energy spectrum,
and a finite compressibility of the fluid. Moreover, nonlinear bosonic
matter waves should undergo a localization–delocalization quantum
phase transition in any spatial dimension when the interaction
strength is varied3,4; the transition brings the system from a non-
interacting Anderson insulator to an interacting superfluid con-
densate, or from a superfluid to a Bose glass. Such a transition is
relevant for a large variety of physical systems, including superfluid
helium in porous media5, Cooper pairs in disordered superconduc-
tors6,7, and cold atoms in random optical potentials2,8. Despite the
long history of activity on the subject, a quantitative understanding
of the phase diagram of disordered and interacting bosons based on
experiments is still lacking.

Recent experiments have demonstrated the capability of realizing
and controlling novel Bose fluids made of quasiparticles in condensed
matter systems (ref. 9 and 10, and references therein). In this context,
a prominent place is occupied by the equilibrium Bose fluid realized in

quantum magnets subjected to a magnetic field (ref. 10, and refer-
ences therein) in which disorder can be introduced in a controlled way
by chemical doping, leading to novel bosonic phases11–15. The ground
state of such systems without disorder and in zero field corresponds to
a gapped bosonic Mott insulator. Extra bosons can be injected into the
system by applying a critical magnetic field that overcomes the gap,
and that drives a transition to a superfluid state (a magnetic Bose–
Einstein condensate, BEC). Such a state corresponds to an XY anti-
ferromagnetic state of the spin components transverse to the field.
Here we investigate the Bose fluid of magnetic quasiparticles realized
in the model compound NiCl2?4SC(NH2)2 (DTN)16 with spin S 5 1
via experiments (a.c. magnetic susceptibility, d.c. magnetization and
specific heat), and large-scale quantum Monte Carlo (QMC) simula-
tions. Disorder is introduced by Cl R Br substitution, which, as we
will see, leads to randomness in the bosonic hoppings and interac-
tions. We select this compound because the parent compound (pure
DTN) has been shown to exhibit Bose–Einstein condensation of the
spin system with high accuracy17. We also select it because it can be
doped very cleanly, which is extremely unusual among similar
quantum magnets. The Cl atom sits in an over-sized cage such that
it can be replaced by a larger Br atom with very minimal changes in the
lattice constants and no observable structural distortion (see
Supplementary Information). Thus we can use Br substitution to
modify bosonic parameters (for example, magnetic exchange and
crystalline electric fields) without other unwanted effects, such as local
changes in site symmetry and local modulations of the lattice constant.
In experiments and QMC simulations, we observe a Bose glass in two
extended regions of the temperature–magnetic field phase diagram of
Br-doped DTN. The gapless nature of the Bose glass manifests itself
in a finite uniform magnetic susceptibility (corresponding to the
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Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany. 6Condensed Matter and Magnet Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
7National Institute for Materials Physics, 077125 Bucharest-Magurele, Romania. 8Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS UMR5672, 46 Allée d’Italie, 69364 Lyon, France.
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FIG. 4. Schematic diagram (T=0) of the levels of energy. a)
The lowest energy levels of Ni++ in an axial crystalline field as
a function of the external magnetic field. b) The broad band
indicates dispersion of the lowest excited level due to exchange
coupling. Condensation occurs in the range between the fields
Hc1 and Hc2, in which the magnetization M increases almost
linearly up to the saturation.

induced phase diagram of TlCuCl3 was studied by ap-
plying the Hartree-Fock-Popov (HFP) mean field anal-
ysis to the hard-core boson Hamiltonian. For a diluted
gas of particles the interatomic interaction is sufficiently
weak, therefore the mean field Gross-Pitaevskii theory is
a logical tool to study this system. In this model the
particle scattering is dominated by the two-body contact
interactions, which are described by the s-wave scatter-
ing length. The physical implication of this condition is
that it is highly improbable for more particles to interact
with each other simultaneously. In hard-sphere gas, the
scattering length is equal to the diameter of the atoms. In
the low-density limit only the two particles interactions
are important. The low-energy Hamiltonian (3) can be
transformed into boson language via identifying S+ = a†,
where a† is the boson creation operator, in

H =
∑

k

(ε− µ))a+k ak +
v0
V

∑

a+k+qa
+
k−qakak (4)

where ε = !k2/2m is the kinetic energy, v0 is the short-
range repulsion between two magnons that occupy the
same site and V is the unit-cell volume of the sample.
In this hard-core model applied to the Ni2+ ions the

density of the magnetization along the field direction, Sz

= +1, is mapped onto the boson density. Here the Sz =
−1 component is neglected, because we are interested in

low-field and low-temperatures regions, where this level
does not contribute. An analysis taking this level into
account is discussed in Section 4.1714,22.
The physics of the magnons depends on the relative

strengths of the repulsive interaction v0 and kinetic en-
ergy. When the interaction is attractive, v0 < 0, the
system collapses. If the repulsion interaction dominates,
the system evolves into a state where the bosons form
a large lattice that gives rise to a magnetization plateau
in the M vs. H curve. If the kinetic term dominates,
the system, which corresponds to a Mott insulator in the
low-field region, undergoes a condensation at the first
critical field Hc1. Above this field the density of bosons
increases proportionally to the longitudinal component of
the magnetization M up to the saturation value, Msat,
at the second critical field Hc2. The result is an an-
tiferromagnetic state characterized by the presence of a
staggered transverse moment, Msta, perpendicular to the
applied magnetic field, forming a BEC state. The abso-
lute value and relative angle of Msta are related to the
amplitude and the phase of the condensate wave func-
tion, respectively. In this phase the condensate shows a
macroscopic order parameter that spontaneously breaks
global phase symmetry by the emerging antiferromag-
netic longe-range order. In these conditions, there must
exist a gapless mode called Nambu-Goldstone in the new
phase, which is necessary to keep the original invariance
of the Hamiltonian. At Hc2 all sites are occupied by
bosons and the system enters a second Mott insulating
phase25–28.

C. 3.3. Boson Number Conservation

At the induced phase the Ni magnetic spins do not
have any preferred orientation in the plane perpendicu-
lar to the magnetic field, and the antiferromagnetic order
is XY-like. The tetragonal crystal structure provides a
uniaxial crystal-field symmetry about the direction of the
applied field. It is this symmetry that enforces number
conservation among the bosons. This forces the bosons
to remain in the system and macroscopically occupy the
ground state at low temperatures. Boson-number con-
servation is a key condition that separates bosonic sys-
tems that condense from those that do not. Formally, the
phenomenon of BEC requires the conservation of particle
number. The boson number must be set by some exter-
nal constraint or else bosons will be excitations of the
system and vanish as the temperature is lowered to zero,
as is the case, e.g., for phonons. In the Hamiltonian (4)
every creation operator a† is multiplied by a destruction
operator a. If the Hamiltonian is rotated by an angle φ
in the plane perpendicular to the field, then a† → a†eiφ

and a → ae−iφ, such that (a†eiφ)(ae−iφ) = a†a. Be-
cause this Hamiltonian is independent of φ the number
of bosons is conserved. Thus, the uniaxial symmetry of
the Hamiltonian creates a number conservation law for
the bosons29. In real situations, the square lattice of the
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single-dimer ground state is a singlet and the lowest-energy
excitation is an S ¼ 1 triplet consisting of jSz ¼ −1i,
jSz ¼ 0i, and jSz ¼ −1i states, which have an energy J0
relative to the singlet. The presence of interdimer interactions
disperses the triplet levels into a band of excitations and the
spin gap of the coupled system is reduced relative to
the single-dimer gap J0. This is shown for TlCuCl3 in
Fig. 6. The branch of jSz ¼ 1i excitations decreases linearly
in magnetic field via the Zeeman effect, thereby creating a
degeneracy between the lowest energy jSz ¼ 1i excitation and
the singlet ground state that leads to a divergent susceptibility
at the wave vectors that minimize the triplet dispersion
relation. Long-range magnetic order occurs between Hc1
and Hc2 and the spins align with the magnetic field above
Hc2 creating a saturated paramagnet.
Zero-field gaps also exist in systems of nondimerized S ¼ 1

spins. Single-ion anisotropy terms, like DðSzÞ2, can become
important for S ≥ 1 systems. One example of a system of
S ¼ 1 spins and strong easy-plane single-ion anisotropy is
NiCl2-4SCðNH2Þ2 (DTN) (see Fig. 7). The DðSzÞ2 term
(D > 0) splits the S ¼ 1 triplet of each Ni2þ ion into an jSz ¼
0i ground state and a jSz ¼ %1i doublet separated by a gapD.
Unlike the isotropic S ¼ 1=2 dimer systems, the direction of
the magnetic field is now important because the D term
already breaks the rotational SU(2) symmetry and so H must
be applied along the direction of D to retain uniaxial
symmetry. As H angles away from ẑ, the BEC description
becomes increasingly less valid and there is a crossover from a
BEC QCP to an Ising QCP.
BEC has also been studied in systems of dimers with higher

spin. For example, Ba3Mn2O8 and F2PNNNO are S ¼ 1
dimer compounds. In Ba3Mn2O8 (see Fig. 8), antiferromag-
netic coupling of S ¼ 1Mn spins within a dimer with strength
J0 produces an jS ¼ 0i singlet ground state, an S ¼ 1 spin
triplet with a gap of J0, and finally an S ¼ 2 spin quintuplet
with a gap 3J0 above the jS ¼ 0i ground state. As shown in
Fig. 8, the energies of the Sz ¼ 1 triplet and Sz ¼ 2 quintuplet
spin levels decrease linearly in magnetic field and lead to
two domes of antiferromagnetic order, the first where the
Sz ¼ 1 triplets condense, between Hc1 ≤ H ≤ Hc2, and the
second where the Sz ¼ 2 quintuplets condense, between
Hc3 ≤ H ≤ Hc4.
Cs2CuCl4 is an example of a compound that is already

magnetically ordered in zero field (see Fig. 9), in contrast to all
others discussed in this section, that have a zero-field gap.
The BEC QCP is observed at the saturation field Hc when
the gap opens. The Cu2þS ¼ 1=2 moments form an aniso-
tropic triangular lattice with two different antiferromagnetic
couplings.
Tetramer or larger superstructures can also provide a route

to BEC. Sul-Cu2Cl4 is such an example of a four-leg spin
ladder compound. In another material, ðCuClÞLaNb2O7, it
was initially thought that antiferromagnetically coupled tet-
ramers could occur, resulting in a nonmagnetic collective
ground state with a finite gap Δ. Further studies found that an
S ¼ 1=2 dimer description is more appropriate (Tsirlin and
Rosner, 2010).
Finally, systems with infinite coupled chains can form gaps.

For example, IPA-CuCl3 is a Haldane system where effective
S ¼ 1 spins are created by dimers of ferromagnetically

coupled S ¼ 1=2 spins. The effective S ¼ 1 moments are
antiferromagnetically coupled along chains. While the inter-
chain coupling is weak enough to observe a Haldane phase
(quantum paramagnet) at zero field, it is sufficiently strong to
create 3D magnetic ordering above a critical magnetic
field Hc1.

FIG. 6 (color online). (a) Cartoon of the spin levels of TlCuCl3
showing the zero-field gap due to the interdimer interactions
Jinterdimer. The levels are dispersed, forming bands that evolve in
magnetic fields due to the Zeeman interaction. Long-range order
occurs in the region Hc1 < H < Hc2. (b) Phase diagram of
TlCuCl3 from elastic neutron diffraction (open symbols) and
magnetization measurements (solid symbols). The complete
phase diagram extends to approximately 100 T, and the anti-
ferromagnetically ordered phase occurs underneath and to the
right of the data points. Adapted from Tanaka et al., 2001.
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(b)
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T c
(

FIG. 7 (color online). (a) Cartoon of the spin levels of DTN
[NiCl2-4SCðNH2Þ2] showing the Sz ¼ %1 excited doublet and
Sz ¼ 0 ground state, separated by a zero-field gap D due to
single-ion anisotropy. As with Fig. 6, the spin levels are shown as
bands due to magnetic dispersion. (b) Phase diagram from
specific heat (solid symbols) and magnetocaloric effect (open
symbols) showing a dome-shaped region of quasi-XY antiferro-
magnetic order (XYAFM), the low-field quantum paramagnet
(QPM), and the high-field spin saturated phase (SP). Adapted
from Zapf et al., 2006.

584 Vivien Zapf, Marcelo Jaime, and C. D. Batista: Bose-Einstein condensation in quantum magnets

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014

5

FIG. 4. Schematic diagram (T=0) of the levels of energy. a)
The lowest energy levels of Ni++ in an axial crystalline field as
a function of the external magnetic field. b) The broad band
indicates dispersion of the lowest excited level due to exchange
coupling. Condensation occurs in the range between the fields
Hc1 and Hc2, in which the magnetization M increases almost
linearly up to the saturation.

induced phase diagram of TlCuCl3 was studied by ap-
plying the Hartree-Fock-Popov (HFP) mean field anal-
ysis to the hard-core boson Hamiltonian. For a diluted
gas of particles the interatomic interaction is sufficiently
weak, therefore the mean field Gross-Pitaevskii theory is
a logical tool to study this system. In this model the
particle scattering is dominated by the two-body contact
interactions, which are described by the s-wave scatter-
ing length. The physical implication of this condition is
that it is highly improbable for more particles to interact
with each other simultaneously. In hard-sphere gas, the
scattering length is equal to the diameter of the atoms. In
the low-density limit only the two particles interactions
are important. The low-energy Hamiltonian (3) can be
transformed into boson language via identifying S+ = a†,
where a† is the boson creation operator, in

H =
∑

k

(ε− µ))a+k ak +
v0
V

∑

a+k+qa
+
k−qakak (4)

where ε = !k2/2m is the kinetic energy, v0 is the short-
range repulsion between two magnons that occupy the
same site and V is the unit-cell volume of the sample.
In this hard-core model applied to the Ni2+ ions the

density of the magnetization along the field direction, Sz

= +1, is mapped onto the boson density. Here the Sz =
−1 component is neglected, because we are interested in

low-field and low-temperatures regions, where this level
does not contribute. An analysis taking this level into
account is discussed in Section 4.1714,22.
The physics of the magnons depends on the relative

strengths of the repulsive interaction v0 and kinetic en-
ergy. When the interaction is attractive, v0 < 0, the
system collapses. If the repulsion interaction dominates,
the system evolves into a state where the bosons form
a large lattice that gives rise to a magnetization plateau
in the M vs. H curve. If the kinetic term dominates,
the system, which corresponds to a Mott insulator in the
low-field region, undergoes a condensation at the first
critical field Hc1. Above this field the density of bosons
increases proportionally to the longitudinal component of
the magnetization M up to the saturation value, Msat,
at the second critical field Hc2. The result is an an-
tiferromagnetic state characterized by the presence of a
staggered transverse moment, Msta, perpendicular to the
applied magnetic field, forming a BEC state. The abso-
lute value and relative angle of Msta are related to the
amplitude and the phase of the condensate wave func-
tion, respectively. In this phase the condensate shows a
macroscopic order parameter that spontaneously breaks
global phase symmetry by the emerging antiferromag-
netic longe-range order. In these conditions, there must
exist a gapless mode called Nambu-Goldstone in the new
phase, which is necessary to keep the original invariance
of the Hamiltonian. At Hc2 all sites are occupied by
bosons and the system enters a second Mott insulating
phase25–28.

C. 3.3. Boson Number Conservation

At the induced phase the Ni magnetic spins do not
have any preferred orientation in the plane perpendicu-
lar to the magnetic field, and the antiferromagnetic order
is XY-like. The tetragonal crystal structure provides a
uniaxial crystal-field symmetry about the direction of the
applied field. It is this symmetry that enforces number
conservation among the bosons. This forces the bosons
to remain in the system and macroscopically occupy the
ground state at low temperatures. Boson-number con-
servation is a key condition that separates bosonic sys-
tems that condense from those that do not. Formally, the
phenomenon of BEC requires the conservation of particle
number. The boson number must be set by some exter-
nal constraint or else bosons will be excitations of the
system and vanish as the temperature is lowered to zero,
as is the case, e.g., for phonons. In the Hamiltonian (4)
every creation operator a† is multiplied by a destruction
operator a. If the Hamiltonian is rotated by an angle φ
in the plane perpendicular to the field, then a† → a†eiφ

and a → ae−iφ, such that (a†eiφ)(ae−iφ) = a†a. Be-
cause this Hamiltonian is independent of φ the number
of bosons is conserved. Thus, the uniaxial symmetry of
the Hamiltonian creates a number conservation law for
the bosons29. In real situations, the square lattice of the
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single-dimer ground state is a singlet and the lowest-energy
excitation is an S ¼ 1 triplet consisting of jSz ¼ −1i,
jSz ¼ 0i, and jSz ¼ −1i states, which have an energy J0
relative to the singlet. The presence of interdimer interactions
disperses the triplet levels into a band of excitations and the
spin gap of the coupled system is reduced relative to
the single-dimer gap J0. This is shown for TlCuCl3 in
Fig. 6. The branch of jSz ¼ 1i excitations decreases linearly
in magnetic field via the Zeeman effect, thereby creating a
degeneracy between the lowest energy jSz ¼ 1i excitation and
the singlet ground state that leads to a divergent susceptibility
at the wave vectors that minimize the triplet dispersion
relation. Long-range magnetic order occurs between Hc1
and Hc2 and the spins align with the magnetic field above
Hc2 creating a saturated paramagnet.
Zero-field gaps also exist in systems of nondimerized S ¼ 1

spins. Single-ion anisotropy terms, like DðSzÞ2, can become
important for S ≥ 1 systems. One example of a system of
S ¼ 1 spins and strong easy-plane single-ion anisotropy is
NiCl2-4SCðNH2Þ2 (DTN) (see Fig. 7). The DðSzÞ2 term
(D > 0) splits the S ¼ 1 triplet of each Ni2þ ion into an jSz ¼
0i ground state and a jSz ¼ %1i doublet separated by a gapD.
Unlike the isotropic S ¼ 1=2 dimer systems, the direction of
the magnetic field is now important because the D term
already breaks the rotational SU(2) symmetry and so H must
be applied along the direction of D to retain uniaxial
symmetry. As H angles away from ẑ, the BEC description
becomes increasingly less valid and there is a crossover from a
BEC QCP to an Ising QCP.
BEC has also been studied in systems of dimers with higher

spin. For example, Ba3Mn2O8 and F2PNNNO are S ¼ 1
dimer compounds. In Ba3Mn2O8 (see Fig. 8), antiferromag-
netic coupling of S ¼ 1Mn spins within a dimer with strength
J0 produces an jS ¼ 0i singlet ground state, an S ¼ 1 spin
triplet with a gap of J0, and finally an S ¼ 2 spin quintuplet
with a gap 3J0 above the jS ¼ 0i ground state. As shown in
Fig. 8, the energies of the Sz ¼ 1 triplet and Sz ¼ 2 quintuplet
spin levels decrease linearly in magnetic field and lead to
two domes of antiferromagnetic order, the first where the
Sz ¼ 1 triplets condense, between Hc1 ≤ H ≤ Hc2, and the
second where the Sz ¼ 2 quintuplets condense, between
Hc3 ≤ H ≤ Hc4.
Cs2CuCl4 is an example of a compound that is already

magnetically ordered in zero field (see Fig. 9), in contrast to all
others discussed in this section, that have a zero-field gap.
The BEC QCP is observed at the saturation field Hc when
the gap opens. The Cu2þS ¼ 1=2 moments form an aniso-
tropic triangular lattice with two different antiferromagnetic
couplings.
Tetramer or larger superstructures can also provide a route

to BEC. Sul-Cu2Cl4 is such an example of a four-leg spin
ladder compound. In another material, ðCuClÞLaNb2O7, it
was initially thought that antiferromagnetically coupled tet-
ramers could occur, resulting in a nonmagnetic collective
ground state with a finite gap Δ. Further studies found that an
S ¼ 1=2 dimer description is more appropriate (Tsirlin and
Rosner, 2010).
Finally, systems with infinite coupled chains can form gaps.

For example, IPA-CuCl3 is a Haldane system where effective
S ¼ 1 spins are created by dimers of ferromagnetically

coupled S ¼ 1=2 spins. The effective S ¼ 1 moments are
antiferromagnetically coupled along chains. While the inter-
chain coupling is weak enough to observe a Haldane phase
(quantum paramagnet) at zero field, it is sufficiently strong to
create 3D magnetic ordering above a critical magnetic
field Hc1.

FIG. 6 (color online). (a) Cartoon of the spin levels of TlCuCl3
showing the zero-field gap due to the interdimer interactions
Jinterdimer. The levels are dispersed, forming bands that evolve in
magnetic fields due to the Zeeman interaction. Long-range order
occurs in the region Hc1 < H < Hc2. (b) Phase diagram of
TlCuCl3 from elastic neutron diffraction (open symbols) and
magnetization measurements (solid symbols). The complete
phase diagram extends to approximately 100 T, and the anti-
ferromagnetically ordered phase occurs underneath and to the
right of the data points. Adapted from Tanaka et al., 2001.
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FIG. 7 (color online). (a) Cartoon of the spin levels of DTN
[NiCl2-4SCðNH2Þ2] showing the Sz ¼ %1 excited doublet and
Sz ¼ 0 ground state, separated by a zero-field gap D due to
single-ion anisotropy. As with Fig. 6, the spin levels are shown as
bands due to magnetic dispersion. (b) Phase diagram from
specific heat (solid symbols) and magnetocaloric effect (open
symbols) showing a dome-shaped region of quasi-XY antiferro-
magnetic order (XYAFM), the low-field quantum paramagnet
(QPM), and the high-field spin saturated phase (SP). Adapted
from Zapf et al., 2006.
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FIG. 4. Schematic diagram (T=0) of the levels of energy. a)
The lowest energy levels of Ni++ in an axial crystalline field as
a function of the external magnetic field. b) The broad band
indicates dispersion of the lowest excited level due to exchange
coupling. Condensation occurs in the range between the fields
Hc1 and Hc2, in which the magnetization M increases almost
linearly up to the saturation.

induced phase diagram of TlCuCl3 was studied by ap-
plying the Hartree-Fock-Popov (HFP) mean field anal-
ysis to the hard-core boson Hamiltonian. For a diluted
gas of particles the interatomic interaction is sufficiently
weak, therefore the mean field Gross-Pitaevskii theory is
a logical tool to study this system. In this model the
particle scattering is dominated by the two-body contact
interactions, which are described by the s-wave scatter-
ing length. The physical implication of this condition is
that it is highly improbable for more particles to interact
with each other simultaneously. In hard-sphere gas, the
scattering length is equal to the diameter of the atoms. In
the low-density limit only the two particles interactions
are important. The low-energy Hamiltonian (3) can be
transformed into boson language via identifying S+ = a†,
where a† is the boson creation operator, in

H =
∑

k

(ε− µ))a+k ak +
v0
V

∑

a+k+qa
+
k−qakak (4)

where ε = !k2/2m is the kinetic energy, v0 is the short-
range repulsion between two magnons that occupy the
same site and V is the unit-cell volume of the sample.
In this hard-core model applied to the Ni2+ ions the

density of the magnetization along the field direction, Sz

= +1, is mapped onto the boson density. Here the Sz =
−1 component is neglected, because we are interested in

low-field and low-temperatures regions, where this level
does not contribute. An analysis taking this level into
account is discussed in Section 4.1714,22.
The physics of the magnons depends on the relative

strengths of the repulsive interaction v0 and kinetic en-
ergy. When the interaction is attractive, v0 < 0, the
system collapses. If the repulsion interaction dominates,
the system evolves into a state where the bosons form
a large lattice that gives rise to a magnetization plateau
in the M vs. H curve. If the kinetic term dominates,
the system, which corresponds to a Mott insulator in the
low-field region, undergoes a condensation at the first
critical field Hc1. Above this field the density of bosons
increases proportionally to the longitudinal component of
the magnetization M up to the saturation value, Msat,
at the second critical field Hc2. The result is an an-
tiferromagnetic state characterized by the presence of a
staggered transverse moment, Msta, perpendicular to the
applied magnetic field, forming a BEC state. The abso-
lute value and relative angle of Msta are related to the
amplitude and the phase of the condensate wave func-
tion, respectively. In this phase the condensate shows a
macroscopic order parameter that spontaneously breaks
global phase symmetry by the emerging antiferromag-
netic longe-range order. In these conditions, there must
exist a gapless mode called Nambu-Goldstone in the new
phase, which is necessary to keep the original invariance
of the Hamiltonian. At Hc2 all sites are occupied by
bosons and the system enters a second Mott insulating
phase25–28.

C. 3.3. Boson Number Conservation

At the induced phase the Ni magnetic spins do not
have any preferred orientation in the plane perpendicu-
lar to the magnetic field, and the antiferromagnetic order
is XY-like. The tetragonal crystal structure provides a
uniaxial crystal-field symmetry about the direction of the
applied field. It is this symmetry that enforces number
conservation among the bosons. This forces the bosons
to remain in the system and macroscopically occupy the
ground state at low temperatures. Boson-number con-
servation is a key condition that separates bosonic sys-
tems that condense from those that do not. Formally, the
phenomenon of BEC requires the conservation of particle
number. The boson number must be set by some exter-
nal constraint or else bosons will be excitations of the
system and vanish as the temperature is lowered to zero,
as is the case, e.g., for phonons. In the Hamiltonian (4)
every creation operator a† is multiplied by a destruction
operator a. If the Hamiltonian is rotated by an angle φ
in the plane perpendicular to the field, then a† → a†eiφ

and a → ae−iφ, such that (a†eiφ)(ae−iφ) = a†a. Be-
cause this Hamiltonian is independent of φ the number
of bosons is conserved. Thus, the uniaxial symmetry of
the Hamiltonian creates a number conservation law for
the bosons29. In real situations, the square lattice of the

๏ 3D (weakly) coupled S=1chains
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Hm = J!z"#
$i,j%

Si · S j + H!. !2"

H! includes all the other magnetic interactions, which have a
much weaker dependence on the interionic distance than the
first term. Here $i , j% is a sum over nearest neighbors along
the ẑ axis, and z−z0 is the distortion of the interspin distance
or bond length relative to its equilibrium value z0 in the
absence of magnetic interactions. E is the Young’s modulus
of the crystal along ẑ, v is the volume of the unit cell, and N
is the total number of unit cells. We can now obtain the field
dependence of z at T=0 by minimizing the total energy with
respect to z and solving for the relative change in bond
length

d!

dz
= 0 ⇒

z − z0

z0
=

z0

vE

dJ

dz
$Si · S j% . !3"

Here we have used the Hellmann-Feynman theorem.6,7 Since
the magnetostriction is typically measured relative to
z!H=0" rather than z0, it is convenient to rewrite Eq. !3"
using z!H=0" as the value of reference:

z!H" − z!0"
z!0"

= "!$Si · S j%H − $Si · S j%H=0" , !4"

where the proportionality constant is

" =
z0

vE

dJ

dz
. !5"

In principle, this analysis could be extended to three
dimensions,8,9 although calculations of the theoretical short-
range spin correlator become more difficult perpendicular to
the applied field direction. Similar calculations of the mag-
netostriction for hexagonal ferromagnetic systems have also
been performed, although in this case the ferromagnetic or-
der renders the spin-spin correlation function proportional to
S2.10 In conducting helical antiferromagnets, the relationship
has been derived between the magnetostriction and the angle
between spins in adjacent layers.11

Next we test our approach for the compound DTN. This
material is an excellent test bed for the theory since the
short-range spin correlator varies significantly and changes
sign with magnetic field up to &13 T, and the dominant
exchange interactions are uniaxial and well studied, allowing
us to compare theory with experiment.12–15 DTN has previ-
ously attracted attention due to the possibility of Bose-
Einstein condensation !BEC" occurring in the spin system.14

A careful comparison between the theoretical Hamiltonian
and experiment is of particular interest as possible symmetry
changes induced by magnetostriction effects could affect the
applicability of the BEC picture.

In DTN, the Ni atoms are arranged in a body-centered
tetragonal structure as shown in Fig. 1. The strongest term in
Hm is a single-ion anisotropy D that splits the Ni2+ S=1
levels into an Sz=0 ground state and Sz= ±1 excited levels.
However, since D is an on-site interaction, its dependence on
the interionic separation can be neglected. The dominant su-
perexchange interaction Jc=2.2 K occurs along the
Ni-Cl-Cl-Ni chains in the c axis; those along the a and b

axes, Ja=Jb=0.18 K, are an order of magnitude smaller. No
longer-range interactions have been found.14,15

The ground state of DTN is a quantum paramagnet at low
fields due to the single-ion anisotropy D that forces the spins
into the Sz=0 state. With an applied field parallel to the te-
tragonal c axis, the energy of the Sz=−1 is lowered due to the
Zeeman effect until it becomes degenerate with the Sz=0
state at a critical field Hc1=2.1 T.15 For H#Hc1, the mean
value of each magnetic moment has a uniform z component
along the field and a staggered xy component perpendicular
to the field !canted antiferromagnet". With increasing field,
this canted phase evolves continuously to a fully polarized
spin state at Hc2=12.6 T. The evolution of the uniform com-
ponent or magnetization as a function of field is shown in
Fig. 2.

Magnetostriction measurements were performed on single
crystals of DTN down to 25 mK in a 20 T magnet at the
National High Magnetic Field Laboratory in Tallahassee,
FL.16 The magnetostriction as a function of H for H 'c is
shown in Fig. 3 for both the a and c axes of the crystal. The
c-axis magnetostriction $Lc /Lc shows sharp shoulders at the
boundaries of the ordered state at Hc1 and Hc2, and non-
monotonic behavior in between. The a-axis lattice parameter
decreases monotonically by an amount that is an order of
magnitude smaller than the change in the c-axis parameter,
reflecting the fact that Ja%Jc.

FIG. 1. !Color online" Unit cell of tetragonal NiCl2-4SC!NH2"2
showing Ni !red, large" and Cl !blue, small" atoms. The thiourea
molecules have been omitted for clarity.
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FIG. 2. !Color online" Temperature T vs magnetic field H phase
diagram for H 'c determined from specific heat and magnetocaloric
effect !MCE" data, together with the result of quantum Monte Carlo
simulations !Refs. 14 and 15". The magnetization vs field measured
at 16 mK and calculated from QMC simulations is overlaid onto the
phase diagram !Ref. 13". Regions of quantum paramagnetism
!QPM", canted antiferromagnetism !AFM", and saturated paramag-
netism !SP" are shown.
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It has recently been suggested that the organic compound NiCl2-4SC"NH2#2 (DTN) undergoes field-
induced Bose-Einstein condensation (BEC) of the Ni spin degrees of freedom. The Ni S ! 1 spins exhibit
three-dimensional XY antiferromagnetism above a critical field Hc1 $ 2 T. The spin fluid can be
described as a gas of hard-core bosons where the field-induced antiferromagnetic transition corresponds
to Bose-Einstein condensation. We have determined the spin Hamiltonian of DTN using inelastic neutron
diffraction measurements, and we have studied the high-field phase diagram by means of specific heat and
magnetocaloric effect measurements. Our results show that the field-temperature phase boundary
approaches a power-law H%Hc1 / T!c near the quantum critical point, with an exponent that is
consistent with the 3D BEC universal value of ! ! 1:5.
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In the past few years, quantum spin systems exhibiting
magnetic-field-induced quantum phase transitions (QPT)
to an antiferromagnetic (AF) phase have received an in-
creasing amount of attention. The compounds studied to
date consist of weakly coupled chains of S ! 1 Ni atoms
[1–3], planes of Cu dimers, (BaCuSi2O6) [4,5], or 3D
coupled spin ladders (TlCuCl3 and KCuCl3) [6,7]. The
spin singlet ground state of these systems is separated
from the lowest excited triplet state by a finite energy
gap. In the presence of a magnetic field, the Zeeman
term reduces the energy of the Sz ! 1 triplet, until it
reaches Hc1. A canted XY AF phase is then observed
between Hc1 and an upper critical field Hc2.

Naturally, for Hc1 <H <Hc2, the system also under-
goes a thermodynamic phase transition (TPT) at a critical
temperature Tc"H#. However, the thermodynamic and
quantum phase transitions are qualitatively different. In
the TPT, the ordering is suppressed by phase fluctuations
of the order parameter, and the corresponding critical point
belongs to the d ! 3 XY universality class. In contrast, for
the field-induced QPT, the magnetic ordering is suppressed
by reducing the amplitude of the order parameter, and the
corresponding quantum critical point (QCP) belongs to the
universality class of the dilute Bose gas, with an effective
dimensionality d& z (z ! 2 is the dynamical exponent)
[8]. The Bose gas picture is a more intuitive approach to
understanding the physics of the QPT, in which each Sz !
1 triplet is treated as a hard-core boson. The applied field
then acts like a chemical potential and the Bose gas of
triplets is populated only above the critical value Hc1. For
any finite concentration of particles '0< "< 1(, the bo-
sons form a Bose-Einstein condensation (BEC) that corre-
sponds to the XY AF ordering in the original spin language.

The BEC QPT requires the spin environment to be
axially symmetric with respect to the applied field. A direct
consequence of this symmetry is the existence of a gapless
Goldstone mode (magnons) in the ordered phase. Inelastic
neutron scattering measurements were proposed to be
consistent with the presence of this Goldstone mode in
the ordered phase of TlCuCl3 [6]. However, ESR measure-
ments subsequently revealed a significant degree of devia-
tion from axial symmetry [9].

The compound NiCl2-4SC"NH2#2 (DTN) [10] is a new
candidate for Bose-Einstein condensation of spins [11,12]
and has several features that make it unique among the
class of similar systems. Its tetragonal crystal structure
satisfies the axial spin symmetry requirement for a BEC,
and the symmetry of the spin Hamiltonian can be tuned by
changing the angle between the applied field and the c axis.
It has been predicted [13] that XY AF ordering should
occur for fields along the c axis and Ising-like AF ordering
for finite angles up to 40) away from the c axis. The single
ion anisotropy D$ 8 K [13,14] splits the Ni S ! 1 spin
state into the Sz ! 0 ground state and the Sz ! *1 excited
states. Thus, for H k c, the level crossing occurs between
two triplet states rather than the triplet and the singlet of the
spin dimer systems. Magnetization measurements [10]
have revealed AF order between Hc1 $ 2 T and Hc2 $
12 T with a maximum Néel temperature of 1.2 K. ForH ?
c, no transition is observed up to H ! 15 T, since the field
mixes the Sz ! 0 state with a linear combination of the
Sz ! *1 states, producing an effective repulsion between
energy levels that precludes any field-induced QPT [13].

A key prediction of the BEC theory is a power-law
temperature dependence of the phase transition line H %
Hc1 / T!c , where ! ! 1:5 for a 3D BEC [12,15,16].
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FIG. 3 (color online). H-dependence of the local magnetization  
(right scales) measured in 4% DTNX by the NMR line position 
(left scale) of the high-frequency 14N regular line (circles and 
pentagons, outer right scale) and impurity line (other symbols, 
inner right scale for diamonds and crosses) at 0.89, 0.30 and 
0.113 K. Blue solid line is the 0.94 K magnetization of pure 
DTN from Ref. [?] (where the field scale was reduced by -1.1%, 
to overlap the two slightly different Hc2 values). Vertical dash-
dot-dot line denotes the level-crossing value Hlc = 12.63 T. 
Other tanh-shape lines are "two-level fits", see the text. Inset 
shows the 14N spectrum recorded at 0.89 K and 10.96 T, where 
the colors (or gray hues) denote different contributions: light 
blue, brown and red, for the N(2), N(1) sites (including the 
overlap of the two sites) and the doped "impurity" N(1) site, 
respectively. By shifting and upscaling this latter contribution 
(red line), one can perfectly overlap the regular N(1) lineshape. 

 
 
FIG. 1 (color online). Magnetic field dependence of T1

-1 
measured by 1H and 14N NMR in DTN (from Ref. [?]) and Br 
doped DTNX samples at 2 K, in the quasi-1D regime. Vertical 
dotted line denotes the Hc2 position in DTN. Orange dashed and 
dash-dotted lines show simple gapped behavior for ΔSz = 1 
excitations, e-3

Δ
H/T and e-

Δ
H/T, respectively. The inset shows the 

exponents β of the "stretched exponentials" used to fit the 
relaxation curves in DTNX.  

 
 
FIG. 2 (color online). Magnetic field dependence of T1

-1 
measured by 1H and 14N NMR in 4 % doped DTNX at 113 mK. 
Red dash-dotted line presents the e-

Δ
H/T gapped behavior. Upper 

inset presents the stretch exponents corresponding to the T1
-1 

data. Lower inset shows the temperature dependence of T1
-1 at 

three characteristic field values. Orange dotted line presents 
"distributed gap" behavior, see the text. 

 
 
FIG. 4 (color online). Magnetic field (main panel) and 
temperature (inset) dependence of the linewidth (FWHM) for 
the leftmost NMR line in the 14N spectrum.  

K. YU. POVAROV et al. PHYSICAL REVIEW B 92, 024429 (2015)

around the antiferromagnetic zone center where the dispersion
is a minimum. This is in a strong contrast with the picture
of excitation broadening previously observed in another
bond-disordered gapped antiferromagnet PHCX [20]. In the
latter case, magnon damping is due to scattering on isolated
(discrete) impurities. As a result, it roughly scales with the
single-magnon density of states, and is a maximum at the band
top. In DTNX we find exactly the opposite. As will be argued
below, the observed behavior of !Q is consistent with a smooth
continuous distribution of Heisenberg exchange strengths in
the material.

D. Localized states

Figure 7 shows a high-contrast false color plot of I (Q,ω)
integrated over the whole Brillouin zone and projected onto
a c∗ direction. Note that here we use a linear intensity scale,
compared to the logarithmic scale used above in Fig. 2. In
Fig. 7, the magnon band looks completely “overexposed.”
There are clearly no additional states visible inside the gap.
However, additional states are found just above the top of the
band at !ω " 1.25 meV. These are local excitations, as they
show no dispersion.

Given the low intensity of the feature in 6% DTNX, how
reliable is this observation? An important argument here is that
the feature at 1.25 meV has an intensity distribution, perfectly
matching the sample’s reciprocal lattice. The intensity is
cosine modulated along [001] and constant along [110].
This is nontypical for the spurious features usually having
no Q structure [51]. As the numerical calculations show,
localized feature of this kind can actually be expected in
a bond-disordered system [12,52] (this will be discussed in
more details below). Indirect evidence of high-energy states

FIG. 7. (Color online) High contrast false color map of I (Q,ω)
for Q along c∗ (here Ei = 2.26 meV). The integration range in trans-
verse direction is the entire Brillouin zone. Note the dispersionless
(local) excitations just above the top of the magnon band denoted by
arrows.

in DTNX also comes from the experimentally observed pre-
saturation “pseudoplateau” in magnetization [37]. The width
of the plateau #H " 1.5 T and the observed energy separation
between the band top and the localized state !#ω " 0.2 meV
are in a rough agreement. As these states are located at the
regions of reciprocal space, equivalent to Q = 0 momentum
transfer, they should also be observable by such techniques as
electron spin resonance and THz spectroscopy. A very recent
THz spectroscopy experiment does show the presence of an
additional feature at approximately the same energy in DTNX
and its absence in the parent material [53].

E. Disorder analysis

To understand the emergence of local excitations and
other features of the observed spectrum, we can establish
a crude qualitative “mapping” between the Hamiltonians
of DTN (1) and that of the dimer modeled studied in
Ref. [12]. The latter has two parameters: the intradimer
exchange constant J and the interdimer coupling K. The
dimer strength J primarily determines the gap and interdimer
exchange K determines the bandwidth. The increase of the
former drives the system away, and of the latter—closer
to QCP. In this sense, our S = 1 individual magnetic sites
with single-ion anisotropy can be seen as spin-gap objects
analogous to the S = 1/2 dimers. The parameter J is then
naturally mapped to the single-ion anisotropy D and the
critical coupling K corresponds to the Heisenberg exchange J .
Similar mapping between dimerized and single-ion anisotropy
systems has also been used in a recent theoretical study of
Utesov et al. [52].

The numerical study Ref. [12] predicts the presence of
in-gap states in two cases of discrete disorder distribution:
a small fraction of isolated sites having J < 〈J 〉 (in our
correspondence with DTN D < 〈D〉) [54] or a small fraction
of sites with K > 〈K〉 (in our case J > 〈J 〉) [55]. Our analysis
of the magnon spectrum in DTNX shows that anisotropy D is
effectively increased by Br substitution, so the former scenario
is clearly not applicable. Thus, not having any in-gap bound
states in DTNX may indicate that the disorder of the exchange
constant J is either weak or nondiscrete. At the same time, as
captured by the simulations of Ref. [12] (Fig. 5 therein), a small
number of sites with a singular large value of J > 〈J 〉 (i.e.,
D > 〈D〉) produces a localized state near the top of the magnon
band. This is totally in line with our observation of high-energy
local excitations in DTNX. The underlying assumption is that
the anisotropy distribution is discrete, with just a few Ni2+

ions having a substantially increased D term. The simulations
also predict a broadening of the main magnon branch, in the
case of a continuous broad distribution of either K and J . The
former broadens the magnons evenly in the entire Brillouin
zone (Supplementary Material in Ref. [12], Fig. S4), while
the latter mostly affects magnons at the bottom of the band
(Fig. S5). Comparing it to our observations, we may again
guess that the exchange constants in DTNX show a rather
broad continuous distribution.

Certainly, the above discussion is based on a rather tenuous
analogy between two very different Hamiltonians. However,
if we accept this qualitative correspondence, the following
picture emerges. The average values of both 〈D〉 and 〈J 〉
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FIG. 3 (color online). H-dependence of the local magnetization  
(right scales) measured in 4% DTNX by the NMR line position 
(left scale) of the high-frequency 14N regular line (circles and 
pentagons, outer right scale) and impurity line (other symbols, 
inner right scale for diamonds and crosses) at 0.89, 0.30 and 
0.113 K. Blue solid line is the 0.94 K magnetization of pure 
DTN from Ref. [?] (where the field scale was reduced by -1.1%, 
to overlap the two slightly different Hc2 values). Vertical dash-
dot-dot line denotes the level-crossing value Hlc = 12.63 T. 
Other tanh-shape lines are "two-level fits", see the text. Inset 
shows the 14N spectrum recorded at 0.89 K and 10.96 T, where 
the colors (or gray hues) denote different contributions: light 
blue, brown and red, for the N(2), N(1) sites (including the 
overlap of the two sites) and the doped "impurity" N(1) site, 
respectively. By shifting and upscaling this latter contribution 
(red line), one can perfectly overlap the regular N(1) lineshape. 

 
 
FIG. 1 (color online). Magnetic field dependence of T1

-1 
measured by 1H and 14N NMR in DTN (from Ref. [?]) and Br 
doped DTNX samples at 2 K, in the quasi-1D regime. Vertical 
dotted line denotes the Hc2 position in DTN. Orange dashed and 
dash-dotted lines show simple gapped behavior for ΔSz = 1 
excitations, e-3

Δ
H/T and e-

Δ
H/T, respectively. The inset shows the 

exponents β of the "stretched exponentials" used to fit the 
relaxation curves in DTNX.  

 
 
FIG. 2 (color online). Magnetic field dependence of T1

-1 
measured by 1H and 14N NMR in 4 % doped DTNX at 113 mK. 
Red dash-dotted line presents the e-

Δ
H/T gapped behavior. Upper 

inset presents the stretch exponents corresponding to the T1
-1 

data. Lower inset shows the temperature dependence of T1
-1 at 

three characteristic field values. Orange dotted line presents 
"distributed gap" behavior, see the text. 

 
 
FIG. 4 (color online). Magnetic field (main panel) and 
temperature (inset) dependence of the linewidth (FWHM) for 
the leftmost NMR line in the 14N spectrum.  

K. YU. POVAROV et al. PHYSICAL REVIEW B 92, 024429 (2015)

around the antiferromagnetic zone center where the dispersion
is a minimum. This is in a strong contrast with the picture
of excitation broadening previously observed in another
bond-disordered gapped antiferromagnet PHCX [20]. In the
latter case, magnon damping is due to scattering on isolated
(discrete) impurities. As a result, it roughly scales with the
single-magnon density of states, and is a maximum at the band
top. In DTNX we find exactly the opposite. As will be argued
below, the observed behavior of !Q is consistent with a smooth
continuous distribution of Heisenberg exchange strengths in
the material.

D. Localized states

Figure 7 shows a high-contrast false color plot of I (Q,ω)
integrated over the whole Brillouin zone and projected onto
a c∗ direction. Note that here we use a linear intensity scale,
compared to the logarithmic scale used above in Fig. 2. In
Fig. 7, the magnon band looks completely “overexposed.”
There are clearly no additional states visible inside the gap.
However, additional states are found just above the top of the
band at !ω " 1.25 meV. These are local excitations, as they
show no dispersion.

Given the low intensity of the feature in 6% DTNX, how
reliable is this observation? An important argument here is that
the feature at 1.25 meV has an intensity distribution, perfectly
matching the sample’s reciprocal lattice. The intensity is
cosine modulated along [001] and constant along [110].
This is nontypical for the spurious features usually having
no Q structure [51]. As the numerical calculations show,
localized feature of this kind can actually be expected in
a bond-disordered system [12,52] (this will be discussed in
more details below). Indirect evidence of high-energy states

FIG. 7. (Color online) High contrast false color map of I (Q,ω)
for Q along c∗ (here Ei = 2.26 meV). The integration range in trans-
verse direction is the entire Brillouin zone. Note the dispersionless
(local) excitations just above the top of the magnon band denoted by
arrows.

in DTNX also comes from the experimentally observed pre-
saturation “pseudoplateau” in magnetization [37]. The width
of the plateau #H " 1.5 T and the observed energy separation
between the band top and the localized state !#ω " 0.2 meV
are in a rough agreement. As these states are located at the
regions of reciprocal space, equivalent to Q = 0 momentum
transfer, they should also be observable by such techniques as
electron spin resonance and THz spectroscopy. A very recent
THz spectroscopy experiment does show the presence of an
additional feature at approximately the same energy in DTNX
and its absence in the parent material [53].

E. Disorder analysis

To understand the emergence of local excitations and
other features of the observed spectrum, we can establish
a crude qualitative “mapping” between the Hamiltonians
of DTN (1) and that of the dimer modeled studied in
Ref. [12]. The latter has two parameters: the intradimer
exchange constant J and the interdimer coupling K. The
dimer strength J primarily determines the gap and interdimer
exchange K determines the bandwidth. The increase of the
former drives the system away, and of the latter—closer
to QCP. In this sense, our S = 1 individual magnetic sites
with single-ion anisotropy can be seen as spin-gap objects
analogous to the S = 1/2 dimers. The parameter J is then
naturally mapped to the single-ion anisotropy D and the
critical coupling K corresponds to the Heisenberg exchange J .
Similar mapping between dimerized and single-ion anisotropy
systems has also been used in a recent theoretical study of
Utesov et al. [52].

The numerical study Ref. [12] predicts the presence of
in-gap states in two cases of discrete disorder distribution:
a small fraction of isolated sites having J < 〈J 〉 (in our
correspondence with DTN D < 〈D〉) [54] or a small fraction
of sites with K > 〈K〉 (in our case J > 〈J 〉) [55]. Our analysis
of the magnon spectrum in DTNX shows that anisotropy D is
effectively increased by Br substitution, so the former scenario
is clearly not applicable. Thus, not having any in-gap bound
states in DTNX may indicate that the disorder of the exchange
constant J is either weak or nondiscrete. At the same time, as
captured by the simulations of Ref. [12] (Fig. 5 therein), a small
number of sites with a singular large value of J > 〈J 〉 (i.e.,
D > 〈D〉) produces a localized state near the top of the magnon
band. This is totally in line with our observation of high-energy
local excitations in DTNX. The underlying assumption is that
the anisotropy distribution is discrete, with just a few Ni2+

ions having a substantially increased D term. The simulations
also predict a broadening of the main magnon branch, in the
case of a continuous broad distribution of either K and J . The
former broadens the magnons evenly in the entire Brillouin
zone (Supplementary Material in Ref. [12], Fig. S4), while
the latter mostly affects magnons at the bottom of the band
(Fig. S5). Comparing it to our observations, we may again
guess that the exchange constants in DTNX show a rather
broad continuous distribution.

Certainly, the above discussion is based on a rather tenuous
analogy between two very different Hamiltonians. However,
if we accept this qualitative correspondence, the following
picture emerges. The average values of both 〈D〉 and 〈J 〉
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<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

THEORETICAL MODELLING

A single perturbed dimer
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<latexit sha1_base64="n4bTaqmjuYZgky4KRUIlweBD6+Y="></latexit>
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Magnetic field [T]
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<latexit sha1_base64="XxrynPUpyjWuc0PaVCcV4JYQlWo="></latexit>

Sz
tot = ±1

<latexit sha1_base64="mcBG77fExfVL0PjghRBvXlatlO0="></latexit>

Sz
tot = 0

<latexit sha1_base64="3FDVDo8+Z/mcJZmxDeiqI6WH8rE="></latexit>

Sz
tot = ±1

<latexit sha1_base64="mcBG77fExfVL0PjghRBvXlatlO0="></latexit>
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<latexit sha1_base64="gSO4UHZ82+ysPVYr+kvYPBps+as=">AAACGnicbVDLSgMxFL1TX7W+qi7dBIvgQspMFRTcFEVwWcE+pC0lk96ZhmYeJJlCGeqXuPFX3Ki4UXDj3zid1kVbDwQO55wk9x47FFxp0/wxMkvLK6tr2fXcxubW9k5+d6+mgkgyrLJABLJhU4WC+1jVXAtshBKpZwus2/3rsV8foFQ88O/1MMS2R12fO5xRnUid/GVLeiRupQ81pWu3Y7NopjhZIKMbH6U7JI8CByjUqJMv/FlkkVhTUig/QIpKJ//W6gYs8tDXTFClmpYZ6nZMpeZM4CjXihSGlPWpi3E60YgcJVKXOIFMjq9Jqs7kqKfU0LOTpEd1T817Y/E/rxlp56Idcz+MNPps8pETCaIDMu6JdLlEpsUwIZRJnkxIWI9KynTSZi5Z3ZpfdJHUSkXrtFi6OyuUryYdQBYO4BCOwYJzKMMtVKAKDJ7hFT7hy3gyXox342MSzRjTO/swA+P7F6KynV8=</latexit>

Magnetic field

<latexit sha1_base64="1R14uVa3MLWSq2cSmtZ9HFNsjiU=">AAACGnicbVDLSsNAFL3xWesr6tLNYBFcSEmqoOCm6MaNUME+pAllMpm0QycPZiZCCfVL3PgrblTcKLjxb5ymddHWAwOHc+69c+/xEs6ksqwfY2FxaXlltbBWXN/Y3No2d3YbMk4FoXUS81i0PCwpZxGtK6Y4bSWC4tDjtOn1r0Z+84EKyeLoTg0S6oa4G7GAEay01DEvHBGizMkHtUXXczOrbOU4niPDG91LFSOPAaPcH3bM0p+F5ok9IaXqPeSodcw3x49JGtJIEY6lbNtWotwMCz2T02HRSSVNMOnjLs3yjYboUEs+CmKhX6RQrk7V4VDKQejpyhCrnpz1RuJ/XjtVwbmbsShJFY3I+KMg5UjFaJQT8pmgRPGBJpgIpjdEpIcFJkqnWdSn27OHzpNGpWyflCu3p6Xq5TgDKMA+HMAR2HAGVbiGGtSBwDO8wid8GU/Gi/FufIxLF4xJzx5Mwfj+BcXTnXY=</latexit>

1

<latexit sha1_base64="N+VH3Sd7a75nmWY6N6KU9BpfrAU=">AAACDXicdVDLSgMxFL3js9ZX1aWbYBFcyJAZW23BRcGNywq2VdpSMmmmhmYeJBmhDP0GN/6KGxE3CvoL/o3p1C4qeiBwOOckufd4seBKY/xlLSwuLa+s5tby6xubW9uFnd2mihJJWYNGIpI3HlFM8JA1NNeC3cSSkcATrOUNLyZ+655JxaPwWo9i1g3IIOQ+p0QbqVew0072SFsOvG6KbexWyiX3GNtuGVedqiFl7FRPS+OO5yNn3CsUZxk0y6BZBjk2zlCs3UKGeq/w2elHNAlYqKkgSrUdHOtuSqTmVLBxvpMoFhM6JAOWZoOM0aGR+siPpDmhRpk6lyOBUqPAM8mA6Dv125uIf3ntRPuVbsrDONEspNOP/EQgHaFJNajPJaNajAwhVHIzIaJ3RBKqTYF5s/psP/Q/abq2c2K7V6Vi7XzaAeRgHw7gCBw4gxpcQh0aQOERnuEN3q0H68l6sV6n0QXr584ezMH6+AapX5fu</latexit>

2

<latexit sha1_base64="8/srAmoRqIeRigVqP3df0fiOgFI=">AAACDXicbVDLSgMxFL3js9bXqEs3wSK4kGGmtbQDLgpuXFawD2lLyaSZNjTzIMkIZeg3uPFX3Ii4UdBf8G9Mp3ZR9ULgcM5Jcs/xYs6ksu0vY2V1bX1jM7eV397Z3ds3Dw6bMkoEoQ0S8Ui0PSwpZyFtKKY4bceC4sDjtOWNr2Z6654KyaLwVk1i2gvwMGQ+I1hpqm9aaTd7pCOGXi+1LbdaLpeq57Zl227RrWjguq5TcaZdz0fFad8sLDxo4UELD3I0M5tC7Q6yqffNz+4gIklAQ0U4lrLj2LHqpVgoRjid5ruJpDEmYzykabbIFJ1qaoD8SOgTKpSxSz4cSDkJPO0MsBrJ39qM/E/rJMqv9lIWxomiIZl/5CccqQjNqkEDJihRfKIBJoLpDREZYYGJ0gXms+jzfOgvWERvFi2nZBVvLgq1y3kHkINjOIEzcKACNbiGOjSAwCM8wxu8Gw/Gk/FivM6tK8bPnSNYGuPjGwAVmCY=</latexit>

|0i = | · · · """i ⌦ |�1i ⌦ |""" · · · i

<latexit sha1_base64="XyFwjUGcLQzhmpZR2neE/7KFGug=">AAACsXicdVFNj9MwEHUCuyzdD8py5GJRrcRht0r6IVJpkSpx4Vgkuh+qS9dx3cSqE0f2ZFdV2v/HmRv/BjcJh21hJMtPb+a9mbHDTAoDnvfbcV+8PDh8dfS6cXxyevam+fb8xqhcMz5mSip9F1LDpUj5GARIfpdpTpNQ8ttw+WWbv33k2giVfodVxqcJjVKxEIyCpWbNXwUpTSY6CqeF1/bKuNwDm7VHNE0jyT+vCZsrMCTPqN bqae+uyogCkXCza98ZBL2ude30BkE/sKDvdYOBv1mTUSxmfi3e1Oo1ic1SZPjKa/sswf9tWQ1Ua2fN1t+p8T7wa9Aa3qMyRrPmTzJXLE94CkxSYya+l8G0oBoEs34NkhueUbakES/KbTb4wlJzvFDanhRwyT6ro4kxqyS0lQmF2OzmtuS/cpMcFsG0EGmWA09Z1WiRSwwKb78Pz4XmDOTKAsq0sBNiFlNNGdhPbtjV/d1F98FNp+13251vvdbwunoDdITeow/oI/LRJzREX9EIjRFzAueHEzmx23Xv3Qc3rEpdp9a8Q8/CXf4BanDSOw==</latexit>
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D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D0

<latexit sha1_base64="atjkdFdOIDzufUwkwzBbtLUW4Wg="></latexit>

J 0
c

<latexit sha1_base64="r/doeAqqSTmktmxt04a+lmuW2eo="></latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>
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<latexit sha1_base64="XyFwjUGcLQzhmpZR2neE/7KFGug=">AAACsXicdVFNj9MwEHUCuyzdD8py5GJRrcRht0r6IVJpkSpx4Vgkuh+qS9dx3cSqE0f2ZFdV2v/HmRv/BjcJh21hJMtPb+a9mbHDTAoDnvfbcV+8PDh8dfS6cXxyevam+fb8xqhcMz5mSip9F1LDpUj5GARIfpdpTpNQ8ttw+WWbv33k2giVfodVxqcJjVKxEIyCpWbNXwUpTSY6CqeF1/bKuNwDm7VHNE0jyT+vCZsrMCTPqN bqae+uyogCkXCza98ZBL2ude30BkE/sKDvdYOBv1mTUSxmfi3e1Oo1ic1SZPjKa/sswf9tWQ1Ua2fN1t+p8T7wa9Aa3qMyRrPmTzJXLE94CkxSYya+l8G0oBoEs34NkhueUbakES/KbTb4wlJzvFDanhRwyT6ro4kxqyS0lQmF2OzmtuS/cpMcFsG0EGmWA09Z1WiRSwwKb78Pz4XmDOTKAsq0sBNiFlNNGdhPbtjV/d1F98FNp+13251vvdbwunoDdITeow/oI/LRJzREX9EIjRFzAueHEzmx23Xv3Qc3rEpdp9a8Q8/CXf4BanDSOw==</latexit>

Include 1d dynamics  
=>  : localized bound stateSz = 1

He↵ = ��|0ih0|+ Jc

1X

j0=0

|j0ihj0 + 1|+ |j0 + 1ihj0|

<latexit sha1_base64="gY8m0fHgvaFuDgtjtZUvNvlm/KY="></latexit>

0 1 2 3

Effective boundary impurity model

�

<latexit sha1_base64="4V1MPDLKgnMi2+pIKRSqJQXawik=">AAACD3icbVDLSgMxFL1TX7W+Rl26CRbBhQyZsS93RV24rGBbpS0lk6ZtaOZBkhHK0I9w46+4EXGj6Cf4N06ndlH1QuBwzklyz3FDwZXG+MvILC2vrK5l13Mbm1vbO+buXkMFkaSsTgMRyFuXKCa4z+qaa8FuQ8mI5wrWdEcXU715z6TigX+jxyHreGTg8z6nRCdU18RxO32kJQduJ8aW7ZTKztkJtkpFXCkVEoBt2ylWJqh9yYQmk66Zn7vQ3IXmLmRbOJ189Q7SqXXNj3YvoJHHfE0FUapl41B3YiI1p4JNcu1IsZDQERmwOF1lgo4Sqof6gUyOr1HKLviIp9TYcxOnR/RQ/dam5H9aK9L9Sifmfhhp5tPZR/1IIB2gaTmoxyWjWowTQKjkyYaIDokkVCcV5tLos3zoL5hHbziWfWo514V89XzWAWThAA7hGGwoQxWuoAZ1oPAIz/AG78aD8WS8GK8za8b4ubMPC2N8fgN1yZj4</latexit>

⇠ =
1

2 ln(�/Jc)

<latexit sha1_base64="GfTY35TSR6nwDKLEwdX7JQfhLK4="></latexit>

� = J 0
c � Jc

<latexit sha1_base64="abhp1yu5VLpt7OoDrSdusRqSpNQ="></latexit>

+
D0 �D +

p
(D0 �D)2 + (2J 0

c)
2

2

<latexit sha1_base64="YO9kG2o1pZB7BSdRkWJYwioUstw="></latexit>
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D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D0

<latexit sha1_base64="atjkdFdOIDzufUwkwzBbtLUW4Wg="></latexit>

J 0
c

<latexit sha1_base64="r/doeAqqSTmktmxt04a+lmuW2eo="></latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

D

<latexit sha1_base64="WLw8fErggm1u6fydtdyCoY/X+Nk=">AAACCXicdVBLSwMxGMzWV219rHr0EqyCiJTdbWnrraAHjxXsA9tSsmnahmYfJFmhLHv24MWjf8KDFxEvFrz4F/w3Zlv3UNGBwDAzSb5vbJ9RIQ3jS0stLa+srqXXM9mNza1tfWe3IbyAY1LHHvN4y0aCMOqSuqSSkZbPCXJsRpr2+Dz2m7eEC+q513Lik66Dhi4dUIykknr6SdiZPdLmQ7sbGvmzSskqlk6NvGGUTcuMiVUuForRRdTTc4kPEx8mPjSVEiNXvbl7mj5mD2s9/bPT93DgEFdihoRom4YvuyHikmJGokwnEMRHeIyGJJwNEcEjJfXhwOPquBLO1IUccoSYOLZKOkiOxG8vFv/y2oEcVLohdf1AEhfPPxoEDEoPxrXAPuUESzZRBGFO1YQQjxBHWKryMmr1ZD/4P2lYebOQt65UBxUwRxrsgwNwDExQBlVwCWqgDjB4AC/gHUy1e+1Ze9Xe5tGU9nNnDyxA+/gGoK2ZPQ==</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>

Jc

<latexit sha1_base64="4jAvLvdp3e4InXNmF9xHAzxRKdw=">AAACC3icbVDLSgMxFL1TX7W+Rl26CRbBRSkzVdCFi4IbcVXBPqQdhkyaaUMzD5KMUIb5BDf+ihsRNwqCv+DfmE7roq0XAifnnJvce7yYM6ks68corKyurW8UN0tb2zu7e+b+QUtGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdH1RG8/UiFZFN6rcUydAA9C5jOClaZcs5L28ke6YuA5qVW18qosgezWJZlrlv/uaBnYM1CuP0BeDdf87vUjkgQ0VIRjKbu2FSsnxUIxwmlW6iWSxpiM8ICm+RgZOtFUH/mR0CdUKGfnfDiQchx42hlgNZSL2oT8T+smyr90UhbGiaIhmX7kJxypCE2CQX0mKFF8rAEmgukJERligYnS8ZX06vbiosugVavaZ9Xa3Xm5fjXNAIpwBMdwCjZcQB1uoAFNIPAMr/ABn8aT8WK8Ge9Ta8GY9RzCXBlfv9bbluE=</latexit>
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<latexit sha1_base64="XyFwjUGcLQzhmpZR2neE/7KFGug=">AAACsXicdVFNj9MwEHUCuyzdD8py5GJRrcRht0r6IVJpkSpx4Vgkuh+qS9dx3cSqE0f2ZFdV2v/HmRv/BjcJh21hJMtPb+a9mbHDTAoDnvfbcV+8PDh8dfS6cXxyevam+fb8xqhcMz5mSip9F1LDpUj5GARIfpdpTpNQ8ttw+WWbv33k2giVfodVxqcJjVKxEIyCpWbNXwUpTSY6CqeF1/bKuNwDm7VHNE0jyT+vCZsrMCTPqN bqae+uyogCkXCza98ZBL2ude30BkE/sKDvdYOBv1mTUSxmfi3e1Oo1ic1SZPjKa/sswf9tWQ1Ua2fN1t+p8T7wa9Aa3qMyRrPmTzJXLE94CkxSYya+l8G0oBoEs34NkhueUbakES/KbTb4wlJzvFDanhRwyT6ro4kxqyS0lQmF2OzmtuS/cpMcFsG0EGmWA09Z1WiRSwwKb78Pz4XmDOTKAsq0sBNiFlNNGdhPbtjV/d1F98FNp+13251vvdbwunoDdITeow/oI/LRJzREX9EIjRFzAueHEzmx23Xv3Qc3rEpdp9a8Q8/CXf4BanDSOw==</latexit>
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where the constant C and the impurity energy shift ! located
at the (j = 0) boundary are, respectively,

C = 2N (D + J − H ) − 2J + D′ + J ′ − H

! = J ′ − J + D′ − D +
√

(D′ − D)2 + (2J ′)2

2
# 6.3 K.

(2.10)

Note that this description, based on the localization of the
spin flip excitation on the perturbed dimer is only valid for
J ′ > J . The tight-binding Hamiltonian given by Eq. (2.9),
having a localized boundary (impurity) potential !, admits a
localized GS |"0〉 =

∑Ñ
j=0 cj |j〉, where cj ∝ exp(−j/λ) for

! > J . Inserting this form into Eq. (2.9) gives

|"0〉 =
Ñ∑

j=0

c0(−1)j exp
[
−j ln

(
!

J

)]
|j〉. (2.11)

In the limit Ñ & λ = 1/ ln(!/J ), the occupation of the
central (impurity) site is |c0|2 = 1 − exp(−1/ξ‖), where the
localization length governing the decay of the spin density is
given by

ξ‖ = 1
2 ln (!/J )

= 0.47. (2.12)

The energy of this localized bound state can also be obtained
analytically, and the energy difference with the fully polarized
state leads to the crossover field value

H ∗
1D =

{
D + 2J

[
1 + cosh

(
1

2ξ‖

)]}/
gµB (2.13)

= H ∗
dimer + J/gµB + J 2/(gµB!)

# 13.1T. (2.14)

As compared to the isolated dimer picture discussed above,
the first correction term corresponds to the MF contribution
of the fully polarized 1D environment, J/gµB = 1.4 T. The
delocalization of the flipped spin over its neighboring sites
does not extend over large scales, but it nevertheless gains
some kinetic energy, pushing the crossover field further up by
J 2/(gµB!) = 0.5 T.

(c) One impurity in the 3D lattice. The previous single
impurity analysis can be extended to a 3D lattice with a similar
Hamiltonian to Eq. (2.9). The exponential ansatz solution
now includes two different localization lengths along and
perpendicular to the chain direction ξ‖,⊥, with ξ‖ given by
Eq. (2.12) and

ξ⊥ = 1
2 arcsinh (!/2J⊥)

= 0.14. (2.15)

(The localization lengths are expressed in units of lattice
spacings.)

As a result, the final crossover magnetic field is

H ∗ = [H ∗
MF + J e−1/2ξ‖ + 4J⊥e−1/2ξ⊥ ]/gµB

# 13.6 T, (2.16)

where the very short transverse correlation length makes the
last correction term negligible (0.01 T).
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FIG. 6. Local magnetization profile in the Sz
tot = N − 1 symme-

try sector (single spin flip) close to a doped bond, comparing the ED
results (symbols) with the analytical ones (lines). The inset defines
the color code: The blue curve is along the spin chain direction and
the pink/green ones are perpendicular to it. The right panel in semilog
scale shows the exponential localization of the depolarization around
the impurity with very short localization lengths: ξ‖ = 0.476 and
ξ⊥ = 0.169 is obtained by ED.

The magnetization profiles of the original physical (mag-
netic) sites at T = 0 and for H < H ∗ can be computed in the
vicinity of the impurity. On the perturbed left and right dimer
sites,

mleft
z = 1 − (1 − %)[1 − e−1/ξ‖ ][1 − e−1/ξ⊥ ]2 (2.17)

mright
z = 1 − %[1 − e−1/ξ‖ ][1 − e−1/ξ⊥ ]2, (2.18)

where % is defined in Eq. (2.4). A similar expression can be
obtained for the magnetization of the other (clean) sites of the
3D system.

2. Exact diagonalization

Besides the analytical approach presented above for the
1D chain and the realistic 3D system, we also performed
exact diagonalization (ED) calculations. Working in a fixed
Sz

tot = N − 1 symmetry sector allows us to diagonalize large
systems without much effort, the Hamiltonian matrix being of
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024442-5

We also have analytical 
expressions for the local 
magnetisations: Nicely 

comparable to ED!

The   state is 
strongly localized on the 

perturbed dimer!

Sz = 1

LOCAL MAGNETIZATION

3d dynamics



  
M. Dupont et al. PRB 2017THEORETICAL MODELLING: SUMMARY

|0i = | · · · """i ⌦ |�1i ⌦ |""" · · · i

<latexit sha1_base64="XyFwjUGcLQzhmpZR2neE/7KFGug=">AAACsXicdVFNj9MwEHUCuyzdD8py5GJRrcRht0r6IVJpkSpx4Vgkuh+qS9dx3cSqE0f2ZFdV2v/HmRv/BjcJh21hJMtPb+a9mbHDTAoDnvfbcV+8PDh8dfS6cXxyevam+fb8xqhcMz5mSip9F1LDpUj5GARIfpdpTpNQ8ttw+WWbv33k2giVfodVxqcJjVKxEIyCpWbNXwUpTSY6CqeF1/bKuNwDm7VHNE0jyT+vCZsrMCTPqN bqae+uyogCkXCza98ZBL2ude30BkE/sKDvdYOBv1mTUSxmfi3e1Oo1ic1SZPjKa/sswf9tWQ1Ua2fN1t+p8T7wa9Aa3qMyRrPmTzJXLE94CkxSYya+l8G0oBoEs34NkhueUbakES/KbTb4wlJzvFDanhRwyT6ro4kxqyS0lQmF2OzmtuS/cpMcFsG0EGmWA09Z1WiRSwwKb78Pz4XmDOTKAsq0sBNiFlNNGdhPbtjV/d1F98FNp+13251vvdbwunoDdITeow/oI/LRJzREX9EIjRFzAueHEzmx23Xv3Qc3rEpdp9a8Q8/CXf4BanDSOw==</latexit>

 

 [10] [11] [12] Figure 1 anchor 

 [13,14]Figure 2 anchor 
Figure 3 anchor 
 [15] [16] [17] 
 
 
 
 

 
 
FIG. 3 (color online). H-dependence of the local magnetization  
(right scales) measured in 4% DTNX by the NMR line position 
(left scale) of the high-frequency 14N regular line (circles and 
pentagons, outer right scale) and impurity line (other symbols, 
inner right scale for diamonds and crosses) at 0.89, 0.30 and 
0.113 K. Blue solid line is the 0.94 K magnetization of pure 
DTN from Ref. [?] (where the field scale was reduced by -1.1%, 
to overlap the two slightly different Hc2 values). Vertical dash-
dot-dot line denotes the level-crossing value Hlc = 12.63 T. 
Other tanh-shape lines are "two-level fits", see the text. Inset 
shows the 14N spectrum recorded at 0.89 K and 10.96 T, where 
the colors (or gray hues) denote different contributions: light 
blue, brown and red, for the N(2), N(1) sites (including the 
overlap of the two sites) and the doped "impurity" N(1) site, 
respectively. By shifting and upscaling this latter contribution 
(red line), one can perfectly overlap the regular N(1) lineshape. 

 
 
FIG. 1 (color online). Magnetic field dependence of T1

-1 
measured by 1H and 14N NMR in DTN (from Ref. [?]) and Br 
doped DTNX samples at 2 K, in the quasi-1D regime. Vertical 
dotted line denotes the Hc2 position in DTN. Orange dashed and 
dash-dotted lines show simple gapped behavior for ΔSz = 1 
excitations, e-3

Δ
H/T and e-

Δ
H/T, respectively. The inset shows the 

exponents β of the "stretched exponentials" used to fit the 
relaxation curves in DTNX.  

 
 
FIG. 2 (color online). Magnetic field dependence of T1

-1 
measured by 1H and 14N NMR in 4 % doped DTNX at 113 mK. 
Red dash-dotted line presents the e-

Δ
H/T gapped behavior. Upper 

inset presents the stretch exponents corresponding to the T1
-1 

data. Lower inset shows the temperature dependence of T1
-1 at 

three characteristic field values. Orange dotted line presents 
"distributed gap" behavior, see the text. 

 
 
FIG. 4 (color online). Magnetic field (main panel) and 
temperature (inset) dependence of the linewidth (FWHM) for 
the leftmost NMR line in the 14N spectrum.  
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MANY-BODY EFFECTS
Realistic S=1 model

2

Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H

⇤
' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:

H =
X

i

hX

n

Ji,nSi,n · Si+1,n + J?
X

hn mi

Si,n · Si,m

+
X

n

Di,p

�
S

z
i,n

�2
� gµBHS

z
i,n

i
, (1)

where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth

�imp = J
0
� J + D0�D

2

 r
1 +

⇣
2J 0

D�D0

⌘2
� 1

!
' 6.3 K,

which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding

H
⇤

⇡ D+�imp+2J+4J?+
J

2

�imp
+

4J
2
?

�imp
' 13.6 T, (2)

perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:

Htoy =
X

hiji

tij

⇣
b
†
i bj + h.c.

⌘
� µ

X

i

b
†
i bi , (3)

where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =

P
i,j eiq·rij hS

+
i S

�
j i/N

2 at q = (⇡, ⇡, ⇡).
A standard finite size scaling analysis [54]

⇢s(L) = L
2�d

G⇢s

h
L

1/⌫ (T � Tc)
i

mx(L) = L
��/⌫

Gm

h
L

1/⌫ (T � Tc)
i
, (4)

with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
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cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0
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ing H the polarized state (Sz = 2) |""i crosses the
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around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
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bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
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⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
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nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
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The coupling energy of a doped S = 1 dimer being
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bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth
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which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H

⇤
' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
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which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H
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dependence Tc(x, H
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
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For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
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z = 1 state would disperse,
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which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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2 at q = (⇡, ⇡, ⇡).
A standard finite size scaling analysis [54]
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
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kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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MANY-BODY EFFECTS
Realistic S=1 model

2

Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H

⇤
' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:

H =
X

i

hX

n

Ji,nSi,n · Si+1,n + J?
X

hn mi

Si,n · Si,m

+
X

n

Di,p

�
S

z
i,n

�2
� gµBHS

z
i,n

i
, (1)

where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth

�imp = J
0
� J + D0�D

2

 r
1 +

⇣
2J 0

D�D0

⌘2
� 1

!
' 6.3 K,

which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding

H
⇤

⇡ D+�imp+2J+4J?+
J

2

�imp
+

4J
2
?

�imp
' 13.6 T, (2)

perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:

Htoy =
X

hiji

tij

⇣
b
†
i bj + h.c.

⌘
� µ

X

i

b
†
i bi , (3)

where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =

P
i,j eiq·rij hS

+
i S

�
j i/N

2 at q = (⇡, ⇡, ⇡).
A standard finite size scaling analysis [54]

⇢s(L) = L
2�d

G⇢s

h
L

1/⌫ (T � Tc)
i

mx(L) = L
��/⌫

Gm

h
L

1/⌫ (T � Tc)
i
, (4)

with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S
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⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth

�imp = J
0
� J + D0�D

2

 r
1 +

⇣
2J 0

D�D0

⌘2
� 1

!
' 6.3 K,

which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding

H
⇤

⇡ D+�imp+2J+4J?+
J

2

�imp
+

4J
2
?

�imp
' 13.6 T, (2)

perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
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⇤). From such considera-
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
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0 = 5.32 K. Single-
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0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0
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first analyze an isolated “impurity dimer” embedded in
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ing H the polarized state (Sz = 2) |""i crosses the
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For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
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spite its random distribution in real space, this set of
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pending on the impurity concentration [51]. This allows
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increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].
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for di↵erent concentrations x of impurities, still at
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].
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around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
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phase coherence at low enough temperature [16, 47].
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within error bars [60].
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centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
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(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
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⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
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For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
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c). Along the chain direction, undoped bonds display
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bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
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0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,
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which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
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cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].
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In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =

P
i,j eiq·rij hS

+
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2 at q = (⇡, ⇡, ⇡).
A standard finite size scaling analysis [54]
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3

2

Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H

⇤
' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
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here its dynamics is described by a tight-binding model
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,
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rived in Ref. [28], and for which one might expect a global
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In the following, we investigate in details such an
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simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).
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the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3

Ni NiBr ClNi NiClCl

(b)

T

Hc2Hc1

DTNX (x �= 0)

13.6 T H �
c2

(d)

(c)

BEC

H

T
DTN (x = 0)(a)

Hclean
c1 Hclean

c2

QPM FM

BEC

0

0

H� H

Sz = 1
E

n
er

gy
of

th
e

im
p
u
ri

ty
st

at
es

BEC* FM

J?

D0 J 0J DDD

(e)

S z
= 2

H

= 0.18 K

(disorder averaging is performed)

finite concentration (x) of perturbed bonds 



QMC STUDY OF THE MOST REALISTIC 3D S=1 DTNX MODEL

x = 10%

x = 0%

x = 16.67%

x = 12.5%

11.5 12.0 12.5 13.0 13.5 14.0 14.5

H [T]

0

100

200

300

400

T
c

[m
K

]

BEC*BEC

S=1 model

Toy model x = 10%

Yu et al. Nature 489, 379 (2012)

outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
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c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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QMC phase diagram

ν = 0.6717

3DXY (BEC) Universality class

β = 0.3486and

ρsðLÞ ¼ L2−dGρs ½L
1=νðT − TcÞ%

mxðLÞ ¼ L−β=νGm½L1=νðT − TcÞ%; ð4Þ

with d ¼ 3, and the 3D-XY critical exponents [55–57]
ν ¼ 0.6717 and β ¼ 0.3486, is used to extract Tc, after a
Bayesian scaling analysis [58,59]. Both estimates from the
stiffness and the order parameter agree very well within
error bars [60].
Similar simulations and analyses are then repeated for

different concentrations x of impurities, still at the cross-
over field H&, in order to extract the doping dependence
Tcðx;H&Þ. Results are plotted in Fig. 3 for 5% ≤ x ≤
16.67%, where we observe LRO at finite temperature for all
doping levels. The ordering temperature grows linearly
with x. This is qualitatively expected from a naive mean-
field reasoning, as the average coupling between the chains
(setting the 3D energy scale for the finite temperature LRO)
is hJ3Di ∼ J⊥x. More precisely, exact diagonalization
calculations of the effective pairwise coupling between
impurities in DTNX, discussed in Ref. [28,40], yield an
average energy coupling in the transverse direction hJ3Di≃
1.5x (K), which compares well with QMC estimates, at
least for large enough dopings x ≥ 8% (Fig. 3). For small x,
accurate estimates for Tc are very hard to obtain because
simulations get slower with inverse temperature, and finite
size effects become more serious when the number of
impurities decreases. Nevertheless, we can observe at low

doping that the ordering temperature starts to deviate form a
simple linear scaling and displays a faster decay. While it is
impossible to exclude the existence of a critical concen-
tration xc < 5% where Tc vanishes, it is reasonable to
expect that Tcðx;H&Þ will vanish only when x → 0,
presumably with a convex form different from the mean-
field-like shape observed for x > 8%.
Hard-core bosonic toy model.—At this stage, it is

instructive to compare the results obtained for the realistic
microscopic DTNX Hamiltonian (1) with the simple toy-
model HCB Hamiltonian (3) for which QMC simulations
have been performed at half filling (μ ¼ 0). Instead of
working on a diluted impurity lattice with the exponentially
suppressed hoppings derived in Ref. [28], it is easier to
investigate the toy model on a regular cubic lattice made of
coupled chains with disordered nearest-neighbor hoppings.
In order to mimic the exponentially suppressed effective
couplings combined with the random distribution of the
distances between impurities in the original S ¼ 1 problem,
we follow Refs. [41,46] and generate random hoppings
from the broad distribution PðtÞ ∼ t−1þ1=δ, with t ≤ 2.2 K
along the chains, and t ≤ 0.2 K in the transverse directions,
δ being a phenomenological disorder parameter.
Simulations are carried out for L × L=5 × L=5 lattices

with L ¼ 20, 30, 40, 50, and averaged over a large number
≥ 500 of samples for 2 ≤ δ ≤ 8. When performing a similar
finite-size scaling analysis as explained above, LRO is also
detected at low temperature TcðδÞ which vanishes in the
large δ limit. More precisely, the disorder parameter δ of
this toy model can be related to the impurity concentration
x, such that 1=δ ¼ 5x yields a remarkably good agreement
between the two models [61]. For this HCB toy model, less

FIG. 3. Critical ordering temperature for the impurity-induced
LRO atH& ¼ 13.6 T plotted against the impurity concentration x
for the S ¼ 1 model Eq. (1) (hexagon) and for the effective HCB
toy-model Eq. (3) at half filling (circle) plotted against ð5δÞ−1,
suggesting LRO for all finite x values. The average effective
pairwise coupling between impurities in the transverse direction
is also shown (square) for comparison. Lines are guides
to the eyes.

FIG. 2. Finite size scaling analysis for the disorder average spin
stiffness ρsðLÞ (top panels) and transverse AF order parameter
mxðLÞ (bottom panels) following the scaling forms given by
Eq. (4). QMC results obtained for the DTNX Hamiltonian Eq. (1)
on L × L=10 × L=10 lattices of various sizes at H ¼ H& ¼
13.6 T with x ¼ 10% of impurities.
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with d ¼ 3, and the 3D-XY critical exponents [55–57]
ν ¼ 0.6717 and β ¼ 0.3486, is used to extract Tc, after a
Bayesian scaling analysis [58,59]. Both estimates from the
stiffness and the order parameter agree very well within
error bars [60].
Similar simulations and analyses are then repeated for

different concentrations x of impurities, still at the cross-
over field H&, in order to extract the doping dependence
Tcðx;H&Þ. Results are plotted in Fig. 3 for 5% ≤ x ≤
16.67%, where we observe LRO at finite temperature for all
doping levels. The ordering temperature grows linearly
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1.5x (K), which compares well with QMC estimates, at
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expect that Tcðx;H&Þ will vanish only when x → 0,
presumably with a convex form different from the mean-
field-like shape observed for x > 8%.
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microscopic DTNX Hamiltonian (1) with the simple toy-
model HCB Hamiltonian (3) for which QMC simulations
have been performed at half filling (μ ¼ 0). Instead of
working on a diluted impurity lattice with the exponentially
suppressed hoppings derived in Ref. [28], it is easier to
investigate the toy model on a regular cubic lattice made of
coupled chains with disordered nearest-neighbor hoppings.
In order to mimic the exponentially suppressed effective
couplings combined with the random distribution of the
distances between impurities in the original S ¼ 1 problem,
we follow Refs. [41,46] and generate random hoppings
from the broad distribution PðtÞ ∼ t−1þ1=δ, with t ≤ 2.2 K
along the chains, and t ≤ 0.2 K in the transverse directions,
δ being a phenomenological disorder parameter.
Simulations are carried out for L × L=5 × L=5 lattices

with L ¼ 20, 30, 40, 50, and averaged over a large number
≥ 500 of samples for 2 ≤ δ ≤ 8. When performing a similar
finite-size scaling analysis as explained above, LRO is also
detected at low temperature TcðδÞ which vanishes in the
large δ limit. More precisely, the disorder parameter δ of
this toy model can be related to the impurity concentration
x, such that 1=δ ¼ 5x yields a remarkably good agreement
between the two models [61]. For this HCB toy model, less

FIG. 3. Critical ordering temperature for the impurity-induced
LRO atH& ¼ 13.6 T plotted against the impurity concentration x
for the S ¼ 1 model Eq. (1) (hexagon) and for the effective HCB
toy-model Eq. (3) at half filling (circle) plotted against ð5δÞ−1,
suggesting LRO for all finite x values. The average effective
pairwise coupling between impurities in the transverse direction
is also shown (square) for comparison. Lines are guides
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FIG. 2. Finite size scaling analysis for the disorder average spin
stiffness ρsðLÞ (top panels) and transverse AF order parameter
mxðLÞ (bottom panels) following the scaling forms given by
Eq. (4). QMC results obtained for the DTNX Hamiltonian Eq. (1)
on L × L=10 × L=10 lattices of various sizes at H ¼ H& ¼
13.6 T with x ¼ 10% of impurities.
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MANY-BODY EFFECTS
Realistic S=1 model

2

Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H

⇤
' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth
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For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
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' 13.6 T, attributed

to the crossing between S
z = 2 and S
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Fig. 1 (b). Since the transverse bonds which couple
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rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
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cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0
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first analyze an isolated “impurity dimer” embedded in
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ing H the polarized state (Sz = 2) |""i crosses the
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⇤ (panel (d) in Fig. 1). Contrary to
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth
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which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].
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would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H

⇤
' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
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perfectly matching the experiments [28].
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around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
S

z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
z = 1 state would disperse,

here its dynamics is described by a tight-binding model
with a boundary impurity potential well [40] of depth
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which localizes the S
z = 1 state. The energy of such a

bound state can be computed analytically in the limit
of small interchain coupling J? ⌧ J and large impurity
potential �imp � J?, thus yielding

H
⇤

⇡ D+�imp+2J+4J?+
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+
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2
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' 13.6 T, (2)

perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
tions, a minimal toy-model with hard-core bosons (HCB)
would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
served at Tc = 138(4) mK using two di↵erent estimates:
the spin sti↵ness ⇢s [52, 53] and the transverse AF order
parameter mx =

P
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H

⇤). Results are plotted in Fig. 3
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
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z = 1 state at H
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).

Impurity-induced LRO at H
⇤ = 13.6 T— Using QMC

Stochastic Series Expansions (SSE) techniques [48, 49],
the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of

impurities, a finite temperature transition is clearly ob-
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
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Theoretical modelling of DTNX— Recent neutron [39]
and NMR [28] experiments on DTNX at various Br con-
centration 0.04  x  0.13 have both shown the exis-
tence of a localized level above Hc2. Building on NMR
data [28], the microscopic parameters for Br-doped bonds
(there are two non-equivalent Cl sites in each J bond, but
only one of these can be doped by a Br, see panel (b) of
Fig. 1) can be precisely determined in order to match the
observed spin relaxation peak at H
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' 13.6 T, attributed

to the crossing between S
z = 2 and S

z = 1 levels of im-
purity states (panel (d) of Fig. 1), combined with the
local magnetizations from NMR shifts. DTNX is there-
fore described by the following S = 1 model [28, 40]:
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where the various parameters are shown in Fig. 1 (b-
c). Along the chain direction, undoped bonds display
an AF exchange Ji,n = J = 2.2 K while for Br-doped
bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
first analyze an isolated “impurity dimer” embedded in
a clean system. Starting at high field, upon decreas-
ing H the polarized state (Sz = 2) |""i crosses the
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z = 1 state at H
⇤ (panel (d) in Fig. 1). Contrary to

a clean system where the S
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perfectly matching the experiments [28].
For a small but finite concentration x of Br ions,

around the crossover field H
⇤ we are left with a collec-

tion of localized states which are randomly placed in the

3d system of coupled chains. Using the above parame-
ters, the localization length was determined to be very
short [28], in units of lattice spacings ⇠k ' 0.48 along the
chain and ⇠? ' 0.17 in the transverse directions. De-
spite its random distribution in real space, this set of
localized two-level systems is expected to experience an
e↵ective unfrustrated pair-wise coupling, exponentially
suppressed with the distance [41–46], and their density
is controlled by a chemical potential, proportional to the
external field µ = gµB(H � H

⇤). From such considera-
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would read:
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where non-frustrated hopping terms tij between neigh-
bors are built from the e↵ective pair-wise mechanism de-
rived in Ref. [28], and for which one might expect a global
phase coherence at low enough temperature [16, 47].

In the following, we investigate in details such an
“order from disorder” mechanism using large scale QMC
simulations first for the realistic microscopic S = 1
model, see Eq. (1), and then compare it with the above
toy-model description Eq. (3).
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the DTNX S = 1 Hamiltonian Eq.(1) is simulated for 3d

systems of N = L ⇥ L/r ⇥ L/r sites. For such a weakly
coupled chains problem (J?/J ' 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r, de-
pending on the impurity concentration [51]. This allows
to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L = 24 up to L = 120. Disorder averaging is carried out
over a large number � 300 of independent samples.

As exemplified in Fig. 2 for H = H
⇤ and x = 10% of
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with d = 3, and the 3d-XY critical exponents [55–57]
⌫ = 0.6717 and � = 0.3486, is used to extract Tc, af-
ter a Bayesian scaling analysis [58, 59]. Both estimates
from the sti↵ness and the order parameter agree very well
within error bars [60].

Similar simulations and analyses are then repeated
for di↵erent concentrations x of impurities, still at
the crossover field H

⇤, in order to extract the doping
dependence Tc(x, H
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where the various parameters are shown in Fig. 1 (b-
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bonds (in concentration 2x) Ji,n = J

0 = 5.32 K. Single-
ion anisotropies are Di,n = D = 8.9 K for clean sites
and Di,n = D

0 = 3.2 K for the sites adjacent to a doped
Br atom, here on the left side of the doped bond, see
Fig. 1 (b). Since the transverse bonds which couple
the chains in a three-dimensional (3d) array are not di-
rectly a↵ected by Br-doping, interchain coupling between
nearest-neigbor sites hn mi is assumed to take its clean
value J? = 0.18 K. In the following, we use g = 2.31 for
the gyromagnetic factor, such that the clean upper criti-
cal field Hc2 = (D + 4J + 8J?)/(gµB) = 12.32 T [36].

The coupling energy of a doped S = 1 dimer being
larger than for the undoped case (J 0

/J = 2.42), we
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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1) What is this new ordered phase ?

3) Is BEC* real (experimentally) ???    

2) Where did the Bose glass slip away ??



LOCALIZED IMPURITY STATES BEHAVE LIKE HARD-CORE BOSONS
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BEYOND SINGLE IMPURITY: HARD CORE BOSONS INTERACT!
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Can we get Long Range Order (instead of 
Bose glass) for these degrees of freedom ?

(i) Two impurities: Effective pairwise coupling - Exact Diagonalization results

(ii) Finite concentration of impurities: effective model

=> random couplings
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Effective interactions
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๏ Many impurities: Effective (hard-core) bosonic model for the impurity states
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(i) Two impurities: Effective pairwise coupling - Exact Diagonalization results

(ii) Finite concentration of impurities: effective model

=> random couplings

He↵ = �

X

i,j

tij

⇣
b
†
i bj + h.c.

⌘
� (H �H

⇤)
X

i

ni, tij ⇠ exp(�rij/⇠)

He↵ = �

X

i,j

tij

⇣
b
†
i bj + h.c.

⌘
� (H �H

⇤)
X

i

ni, |tij | ⇠ exp(�rij/⇠)

Random hoppings 
due to random positions 

 of impurities

chemical potential  
controls the density  
of hard-core bosons 

These objects may acquire a 3D coherence in the 
vicinity of half-filling for H~H*   => The BEC* phase!



IS THE BEC* PHASE OBSERVABLE…?
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IS THE BEC* PHASE OBSERVABLE…?
๏ NMR relaxation
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and gapped (green) regimes. (c) Focus on the BEC* phase: the Tc determined from QMC
simulations for 12.5% doping (blue open diamonds) is compared to Tc estimates from the T
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NMR data in a (13±1)% doped sample that are shown in Fig. 3. In pure and lightly disordered
system, the Tc certainly corresponds to the maximum of T�1
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critical spin fluctuations. In strongly disordered system, where the peak of T�1

1 is very broad,
its maximum value is obviously the first guess for the Tc (solid red dots and diamonds), but not
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๏ Multi-impurity effects
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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outside the BEC region is completely different to that of the pure
system. In the pure system, the ground state outside the magnetic
BEC is a Mott insulator with a large spin gap D away from the critical
fields. This leads to an exponential suppression of the specific heat CV
at low temperatures kBT=D as CV / exp[2D/(kBT)], as shown in
Fig. 2d, and to a similarly vanishing susceptibility for T R 0. On the
contrary, for x 5 0.08, we observe that the susceptibility is finite for
H $ Hc2, and it even exhibits a strong satellite peak for H < 13.5 T.
The susceptibility vanishes only for H 5 Hs < 17 T, corresponding to
the saturation field of the entire sample, which is pushed to a much
higher value than in the pure sample (where Hs~H 0ð Þ

c2 ~12:6 T). In
the region H # Hc1 we observe that the specific heat exhibits a non-
exponential decay, down to zero field (Fig. 2d). Therefore we can
conclude that the non-magnetic phases for 0 # H # Hs correspond
to gapless bosonic insulators, which, as we will see, can be identified
with a compressible Bose glass (for H . 0) and an incompressible
Mott glass (for H 5 0).

Modelling Br doping
Br-DTN can be successfully modelled theoretically by considering
that Br substitution for Cl affects the super-exchange paths associated
with the Jc couplings, and it also affects the crystal field locally owing
to the larger atomic radius of Br with respect to Cl. The disappearance
of the spin gap down to H 5 0 and the upward shift of the saturation
field suggests that Br doping locally strengthens the magnetic coup-
ling Jc and lowers the anisotropy D. For simplicity, we only consider
that Ni–Cl–Cl–Ni bonds in DTN can be turned into Ni–Cl–Br–Ni or
Ni–Br–Cl–Ni, and we neglect Ni–Br–Br–Ni bonds that represent only
0.6% of the total bonds for x 5 0.08.

We assign a J 0c value to the magnetic exchange coupling of the Br-
doped bonds, and a D9 value to the single-ion anisotropies of the Ni

ion adjacent to the Br dopant. Note that for a doping concentration x,
we have a fraction 2x of doped bonds, given that each bond can
accommodate a Br dopant on two different Cl sites. We then use J 0c
and D9 as fitting parameters of the full low-temperature magnetiza-
tion curve in Fig. 2a, which is calculated using QMC simulations (see
Supplementary Information). We find an extremely good agreement
between experimental data and simulation for J 0c<2:35Jc and
D9 < D/2, giving us confidence that we are able to quantitatively
model the fundamental microscopic effects of doping in Br-DTN.
Indeed, the critical temperature for Bose–Einstein condensation,
extracted from a finite-size scaling analysis of the simulation data
with doping x 5 0.075 (see Supplementary Information), is in
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Figure 3 | Phase diagrams in the field–temperature plane. a, Experimental
phase diagram of Br-doped DTN from specific heat and susceptometry,
compared to QMC data. The following phases are represented: Bose-Einstein
condensate (BEC), Bose glass (BG) and Mott glass (MG). The lilac regions
represent the magnitude of the spin gap in the Mott insulating (MI) phase.
b, Experimental phase diagram of pure DTN (based on specific heat and the
magnetocaloric effect22).
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Figure 2 | Thermodynamic properties of the magnetic Bose glass and BEC
phases. a, Magnetization curve of Br-DTN at T 5 19 mK, compared to QMC
results, and to pure DTN magnetization (measured at T 5 16 mK). Inset, the
d.c. susceptibility curve, obtained by differentiating the magnetization. b, a.c.
susceptibility of Br-DTN at frequency f 5 88.7 Hz close to the lower and upper
critical fields. The curves have been shifted with respect to one another for
readability purposes. The arrows indicate the appearance of sharp kinks at
higher temperatures. c, Specific heat of Br-DTN from H 5 0 T to H 5 2 T.

d, Specific heat of Br-DTN in the Mott glass and Bose glass phases for
H # Hc1 < 1 T, showing a non-exponential decay as T R 0; a comparison is
made to the predictions of theory based on the local-gap model (LGM), and to
the data for pure DTN; in the upper-left and lower-right panels, the blue dashed
line is a fit of the pure-DTN data to Aexp(–D(H)/kBT), where A is a constant
and D Hð Þ

.
kB~gmB H 0ð Þ

c1 {H
! ".

kB~3:16 K for H 5 0 and 1.64 K for
H 5 1 T. Error bars, 1 s.d.
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Figure 2. Global Magnetic field – temperature phase diagram
for Ni(Cl1�xBrx)2-4SC(NH2)2 (DTNX) based on numerical
(QMC) results (circles and diamonds), displayed for varying
Br doping x. For small finite doping x, above the clean BEC
phase (blue dome) at H > 12.3 T, a succession of impurity-
induced BEC⇤ phases (pink domes) is stabilized together
with intervening localized Bose-glass (BG) regimes (yellow
regions), before getting into the fully polarized ferromagnet
(FM, green region) [65]. Such a localization-delocalization se-
ries is expected to disappear for increasing doping x, to even-
tually form a unique impurity induced BEC⇤ regime, overlap-
ping with the principal BEC dome. Above the 3D percolation
threshold xperc = 15.6%, the system is expected to be ordered
at all field values up to the full polarization. This global dia-
gram summarizes the results presented in this paper.

evidences in DTNX. Then, using large scale numerical
simulation based on the quantum Monte Carlo algorithm,
we reveal in section IV long-range ordering of the impu-
rity degrees of freedom at concentrations and tempera-
tures that should be accessible to experiments. In Sec. V
we show how, upon decreasing the Br-doping concentra-
tion, consecutive disorder-induced BEC mini-domes are
separated by intervening BG regimes (Fig. 2). We thus
unveil the amazing richness of the high magnetic field
phase diagram of DTNX, which is shown in Fig. 2 in the
three dimensional representation: magnetic field – tem-
perature – Br concentration (H–T–x). Finally, Sec. VI
presents concluding remarks.

II. MICROSCOPIC MODELING OF DTNX

The DTN material is a three-dimensional (3D) antifer-
romagnet consisting of weakly coupled chains of S = 1
spins, borne by Ni++ ions, subject to a strong single-ion
anisotropy. The potential interest of this system, pre-
senting at low temperature a magnetic-field-induced, 3D-
ordered, canted phase, was realized already in 1981 [66],
but DTN became a topical system only after this type of

phase was recognized to be a convenient representative of
the BEC [15, 16], and the upper critical field of the BEC
phase in DTN is found to be experimentally well acces-
sible, H

clean
c2 = 12.3 T [27]. Since then, it became one

of the most studied archetypal materials for the BEC-
type spin systems [18]. For the purpose of this article
we will use the first precise set of the exchange couplings
determined for DTN in Ref. [33] using the BEC phase
boundary, the magnetization and the ESR data. This
set was further refined by the high-field neutron results
[67] to take into account the frustrated coupling between
the two tetragonal subsystems of the DTN’s body-centred
tetragonal lattice. The frustration makes the e↵ects of
this coupling negligible, as shown by the numerical anal-
ysis of the order parameter in the BEC phase determined
by NMR [36]. To describe pure and doped DTN we will
thus use the following model for S = 1 spins on a simple
tetragonal lattice:

H =
X

i

hX

n

Ji,nSi,n · Si+1,n + J?
X

hn mi

Si,n · Si,m

+
X

n

Di,n

�
S

z
i,n

�2 � gµBHS
z
i,n

i
, (2.1)

where for pure DTN the AF exchange along the chain
direction is Ji,n = J = 2.2 K, the single-ion anisotropy
is Di,n = D = 8.9 K, and the chains are coupled by
the interchain coupling between the nearest-neigbor sites
(denoted by hn mi) J? = 0.18 K. H is an external
magnetic field applied along the single-ion anisotropy
axis z, thus preserving the U(1) symmetry. We use
g = 2.31 for the gyromagnetic factor, such that in the ab-
sence of chemical disorder, the clean upper critical field
H

clean
c2 = (D + 4J + 8J?)/gµB = 12.3 T, as pictured in

Fig. 1 (x = 0).
In the doped DNTX compound, as shown in Fig. 3(b),

one of the two Cl� ions in the intrachain J coupling bond

D

J

Ni NiCl Ni NiBr ClCl

(a)

(b)

D
0
J

0

J?
J

?

Figure 3. (a) Sketch representation of the relevant 3D struc-
ture for DTNX model. On the chains, the clean sites (single
ion anisotropy D) with first-neighbor interaction (J) are in
grey. The doped ones (single ion anisotropy D

0) are in pink
with the modified interaction (J 0) in pink as well. The three
dimensional coupling between the chains J? is not a↵ected
by the doping. For readability, only one thick line represent-
ing the main chain is displayed. (b) Two types of S = 1
dimers: clean Cl�Cl (left hand side) and doped Br�Cl (right
hand side), with Br preferentially positionned on the left (see
supplementary material of [6]).
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Figure 2: Sketch of the global phase diagram of (a) pure DTN and (b) 13% doped DTNX ,
where colors denote the BEC (blue) and BEC* (red) phases, and the Bose-glass (BG, yellow)
and gapped (green) regimes. (c) Focus on the BEC* phase: the Tc determined from QMC
simulations for 12.5% doping (blue open diamonds) is compared to Tc estimates from the T

�1
1

NMR data in a (13±1)% doped sample that are shown in Fig. 3. In pure and lightly disordered
system, the Tc certainly corresponds to the maximum of T�1

1 , reflecting the maximum of the
critical spin fluctuations. In strongly disordered system, where the peak of T�1

1 is very broad,
its maximum value is obviously the first guess for the Tc (solid red dots and diamonds), but not
necessarily the true value. The lowest estimate for the Tc (orange squares) is then taken as the
point where the T

�1
1 (T ) data turn into their BEC regime. The grey small dots and diamonds

are respectively the experimental points and the QMC simulation of the BEC phase boundary
in the pure DTN, as reported in [23]. The lines are guide to the eye.
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Figure 2. Global Magnetic field – temperature phase diagram
for Ni(Cl1�xBrx)2-4SC(NH2)2 (DTNX) based on numerical
(QMC) results (circles and diamonds), displayed for varying
Br doping x. For small finite doping x, above the clean BEC
phase (blue dome) at H > 12.3 T, a succession of impurity-
induced BEC⇤ phases (pink domes) is stabilized together
with intervening localized Bose-glass (BG) regimes (yellow
regions), before getting into the fully polarized ferromagnet
(FM, green region) [65]. Such a localization-delocalization se-
ries is expected to disappear for increasing doping x, to even-
tually form a unique impurity induced BEC⇤ regime, overlap-
ping with the principal BEC dome. Above the 3D percolation
threshold xperc = 15.6%, the system is expected to be ordered
at all field values up to the full polarization. This global dia-
gram summarizes the results presented in this paper.

evidences in DTNX. Then, using large scale numerical
simulation based on the quantum Monte Carlo algorithm,
we reveal in section IV long-range ordering of the impu-
rity degrees of freedom at concentrations and tempera-
tures that should be accessible to experiments. In Sec. V
we show how, upon decreasing the Br-doping concentra-
tion, consecutive disorder-induced BEC mini-domes are
separated by intervening BG regimes (Fig. 2). We thus
unveil the amazing richness of the high magnetic field
phase diagram of DTNX, which is shown in Fig. 2 in the
three dimensional representation: magnetic field – tem-
perature – Br concentration (H–T–x). Finally, Sec. VI
presents concluding remarks.

II. MICROSCOPIC MODELING OF DTNX

The DTN material is a three-dimensional (3D) antifer-
romagnet consisting of weakly coupled chains of S = 1
spins, borne by Ni++ ions, subject to a strong single-ion
anisotropy. The potential interest of this system, pre-
senting at low temperature a magnetic-field-induced, 3D-
ordered, canted phase, was realized already in 1981 [66],
but DTN became a topical system only after this type of

phase was recognized to be a convenient representative of
the BEC [15, 16], and the upper critical field of the BEC
phase in DTN is found to be experimentally well acces-
sible, H

clean
c2 = 12.3 T [27]. Since then, it became one

of the most studied archetypal materials for the BEC-
type spin systems [18]. For the purpose of this article
we will use the first precise set of the exchange couplings
determined for DTN in Ref. [33] using the BEC phase
boundary, the magnetization and the ESR data. This
set was further refined by the high-field neutron results
[67] to take into account the frustrated coupling between
the two tetragonal subsystems of the DTN’s body-centred
tetragonal lattice. The frustration makes the e↵ects of
this coupling negligible, as shown by the numerical anal-
ysis of the order parameter in the BEC phase determined
by NMR [36]. To describe pure and doped DTN we will
thus use the following model for S = 1 spins on a simple
tetragonal lattice:

H =
X

i

hX

n

Ji,nSi,n · Si+1,n + J?
X

hn mi

Si,n · Si,m

+
X

n

Di,n

�
S

z
i,n

�2 � gµBHS
z
i,n

i
, (2.1)

where for pure DTN the AF exchange along the chain
direction is Ji,n = J = 2.2 K, the single-ion anisotropy
is Di,n = D = 8.9 K, and the chains are coupled by
the interchain coupling between the nearest-neigbor sites
(denoted by hn mi) J? = 0.18 K. H is an external
magnetic field applied along the single-ion anisotropy
axis z, thus preserving the U(1) symmetry. We use
g = 2.31 for the gyromagnetic factor, such that in the ab-
sence of chemical disorder, the clean upper critical field
H

clean
c2 = (D + 4J + 8J?)/gµB = 12.3 T, as pictured in

Fig. 1 (x = 0).
In the doped DNTX compound, as shown in Fig. 3(b),

one of the two Cl� ions in the intrachain J coupling bond

D

J

Ni NiCl Ni NiBr ClCl

(a)

(b)

D
0
J

0

J?
J

?

Figure 3. (a) Sketch representation of the relevant 3D struc-
ture for DTNX model. On the chains, the clean sites (single
ion anisotropy D) with first-neighbor interaction (J) are in
grey. The doped ones (single ion anisotropy D

0) are in pink
with the modified interaction (J 0) in pink as well. The three
dimensional coupling between the chains J? is not a↵ected
by the doping. For readability, only one thick line represent-
ing the main chain is displayed. (b) Two types of S = 1
dimers: clean Cl�Cl (left hand side) and doped Br�Cl (right
hand side), with Br preferentially positionned on the left (see
supplementary material of [6]).
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Figure 2: Sketch of the global phase diagram of (a) pure DTN and (b) 13% doped DTNX ,
where colors denote the BEC (blue) and BEC* (red) phases, and the Bose-glass (BG, yellow)
and gapped (green) regimes. (c) Focus on the BEC* phase: the Tc determined from QMC
simulations for 12.5% doping (blue open diamonds) is compared to Tc estimates from the T

�1
1

NMR data in a (13±1)% doped sample that are shown in Fig. 3. In pure and lightly disordered
system, the Tc certainly corresponds to the maximum of T�1

1 , reflecting the maximum of the
critical spin fluctuations. In strongly disordered system, where the peak of T�1

1 is very broad,
its maximum value is obviously the first guess for the Tc (solid red dots and diamonds), but not
necessarily the true value. The lowest estimate for the Tc (orange squares) is then taken as the
point where the T

�1
1 (T ) data turn into their BEC regime. The grey small dots and diamonds

are respectively the experimental points and the QMC simulation of the BEC phase boundary
in the pure DTN, as reported in [23]. The lines are guide to the eye.
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Figure 2. Global Magnetic field – temperature phase diagram
for Ni(Cl1�xBrx)2-4SC(NH2)2 (DTNX) based on numerical
(QMC) results (circles and diamonds), displayed for varying
Br doping x. For small finite doping x, above the clean BEC
phase (blue dome) at H > 12.3 T, a succession of impurity-
induced BEC⇤ phases (pink domes) is stabilized together
with intervening localized Bose-glass (BG) regimes (yellow
regions), before getting into the fully polarized ferromagnet
(FM, green region) [65]. Such a localization-delocalization se-
ries is expected to disappear for increasing doping x, to even-
tually form a unique impurity induced BEC⇤ regime, overlap-
ping with the principal BEC dome. Above the 3D percolation
threshold xperc = 15.6%, the system is expected to be ordered
at all field values up to the full polarization. This global dia-
gram summarizes the results presented in this paper.

evidences in DTNX. Then, using large scale numerical
simulation based on the quantum Monte Carlo algorithm,
we reveal in section IV long-range ordering of the impu-
rity degrees of freedom at concentrations and tempera-
tures that should be accessible to experiments. In Sec. V
we show how, upon decreasing the Br-doping concentra-
tion, consecutive disorder-induced BEC mini-domes are
separated by intervening BG regimes (Fig. 2). We thus
unveil the amazing richness of the high magnetic field
phase diagram of DTNX, which is shown in Fig. 2 in the
three dimensional representation: magnetic field – tem-
perature – Br concentration (H–T–x). Finally, Sec. VI
presents concluding remarks.

II. MICROSCOPIC MODELING OF DTNX

The DTN material is a three-dimensional (3D) antifer-
romagnet consisting of weakly coupled chains of S = 1
spins, borne by Ni++ ions, subject to a strong single-ion
anisotropy. The potential interest of this system, pre-
senting at low temperature a magnetic-field-induced, 3D-
ordered, canted phase, was realized already in 1981 [66],
but DTN became a topical system only after this type of

phase was recognized to be a convenient representative of
the BEC [15, 16], and the upper critical field of the BEC
phase in DTN is found to be experimentally well acces-
sible, H

clean
c2 = 12.3 T [27]. Since then, it became one

of the most studied archetypal materials for the BEC-
type spin systems [18]. For the purpose of this article
we will use the first precise set of the exchange couplings
determined for DTN in Ref. [33] using the BEC phase
boundary, the magnetization and the ESR data. This
set was further refined by the high-field neutron results
[67] to take into account the frustrated coupling between
the two tetragonal subsystems of the DTN’s body-centred
tetragonal lattice. The frustration makes the e↵ects of
this coupling negligible, as shown by the numerical anal-
ysis of the order parameter in the BEC phase determined
by NMR [36]. To describe pure and doped DTN we will
thus use the following model for S = 1 spins on a simple
tetragonal lattice:

H =
X

i

hX

n

Ji,nSi,n · Si+1,n + J?
X

hn mi

Si,n · Si,m

+
X

n

Di,n

�
S

z
i,n

�2 � gµBHS
z
i,n

i
, (2.1)

where for pure DTN the AF exchange along the chain
direction is Ji,n = J = 2.2 K, the single-ion anisotropy
is Di,n = D = 8.9 K, and the chains are coupled by
the interchain coupling between the nearest-neigbor sites
(denoted by hn mi) J? = 0.18 K. H is an external
magnetic field applied along the single-ion anisotropy
axis z, thus preserving the U(1) symmetry. We use
g = 2.31 for the gyromagnetic factor, such that in the ab-
sence of chemical disorder, the clean upper critical field
H

clean
c2 = (D + 4J + 8J?)/gµB = 12.3 T, as pictured in

Fig. 1 (x = 0).
In the doped DNTX compound, as shown in Fig. 3(b),

one of the two Cl� ions in the intrachain J coupling bond

D

J

Ni NiCl Ni NiBr ClCl

(a)

(b)

D
0
J

0

J?
J

?

Figure 3. (a) Sketch representation of the relevant 3D struc-
ture for DTNX model. On the chains, the clean sites (single
ion anisotropy D) with first-neighbor interaction (J) are in
grey. The doped ones (single ion anisotropy D

0) are in pink
with the modified interaction (J 0) in pink as well. The three
dimensional coupling between the chains J? is not a↵ected
by the doping. For readability, only one thick line represent-
ing the main chain is displayed. (b) Two types of S = 1
dimers: clean Cl�Cl (left hand side) and doped Br�Cl (right
hand side), with Br preferentially positionned on the left (see
supplementary material of [6]).
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FIG. 4: (Color online) Transition temperatures T ⇤g (rescaled to their values at x=3%) versus impurity concentration

for various low-D spin-gapped systems: coupled ladders Bi(Cu1�x(Zn or Ni)x)2PO6 from this study; isolated ladder
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Figure 2: Sketch of the global phase diagram of (a) pure DTN and (b) 13% doped DTNX ,
where colors denote the BEC (blue) and BEC* (red) phases, and the Bose-glass (BG, yellow)
and gapped (green) regimes. (c) Focus on the BEC* phase: the Tc determined from QMC
simulations for 12.5% doping (blue open diamonds) is compared to Tc estimates from the T

�1
1

NMR data in a (13±1)% doped sample that are shown in Fig. 3. In pure and lightly disordered
system, the Tc certainly corresponds to the maximum of T�1

1 , reflecting the maximum of the
critical spin fluctuations. In strongly disordered system, where the peak of T�1

1 is very broad,
its maximum value is obviously the first guess for the Tc (solid red dots and diamonds), but not
necessarily the true value. The lowest estimate for the Tc (orange squares) is then taken as the
point where the T

�1
1 (T ) data turn into their BEC regime. The grey small dots and diamonds

are respectively the experimental points and the QMC simulation of the BEC phase boundary
in the pure DTN, as reported in [23]. The lines are guide to the eye.
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