DISORDER-INDUCED REVIVAL OF BOSE-EINSTEIN CONDENSATION IN $Ni(Cl_{1-x}Br_x)_2 - 4SC(NH_2)$ AT HIGH MAGNETIC FIELDS

Nicolas Laflorencie CNRS - LPT Toulouse

OUTLINE

Impurity-doped spin gapped systems at zero magnetic field

A generic impurity-induced ordering mechanism

Finite magnetic field

- Field-induced and disorder-induced phase transitions?
- The DTN(X) material: coupled (disordered) S=1 chains
- A nice example of a subtle competition between delocalization (BEC) and localization (Bose Glass)

OUTLINE

Impurity-doped spin gapped systems at zero magnetic field

Julien Bobroff Philippe Mendels

NMR + μ SR

Finite magnetic field

SPIN-GAPPED MATERIALS

• Quasi-1D: Ladders, Haldane chains, spin-Peierls chains...

CuGeO₃

BiCu₂PO₆

• Quasi-2D: bilayers

3D coupled dimer systems

TICuCl₃

Bose–Einstein condensation of the triplet states in the magnetic insulator TICuCl₃

Ch. Rüegg*, N. Cavadini*, A. Furrer*, H.-U. Güdel†, K. Krämer†, H. Mutka‡, A. Wildes‡, K. Habicht§ & P. Vorderwisch§

* Laboratory for Neutron Scattering, ETH Zürich & Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

† Department of Chemistry and Biochemistry, Universität Bern, 3000 Bern 9, Switzerland

Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France
BENSC, Hahn-Meitner-Institut, 14109 Berlin Wannsee, Germany

Rüegg et al. Nature (2003)

MAGNETIC FIELD INDUCED BOSE-EINSTEIN CONDENSATION

T. Giamarchi, C. Rüegg, O. Tchernyshyov Nature Physics 2008 V. Zapf, M. Jaime and C. D. Batista Rev. Mod. Phys. 2014

ZERO MAGNETIC FIELD: A GENERIC IMPURITY-INDUCED ORDERING

• Spin-Peierls

• 2-leg Ladders

Coupled dimers

• Coupled Haldane chains

ZERO MAGNETIC FIELD: A GENERIC IMPURITY-INDUCED ORDERING

Spin-Peierls \bigcirc

Hase et al. PRL 1993 Regnault et al. EPL 1995 Fukuyama et al. JPSJ 1996 Martin et al. PRB 1995 Masuda et al. PRL 1998 Grenier et al. PRB 1998

• 2-leg Ladders

Azuma et al. PRB 1997 Greven et al. PRL 1998 Ogushi et al. PRB 1999 Larkin et al. PRL 2000

. . .

Coupled dimers \bigcirc

Oosawa et al. PRB 2002 Oosawa et al. PRB 2003 Fujisawa et al. PRB 2006 Suzuki et al. PRB 2011

Coupled Haldane chains

Uchiyama et al. PRL 1999 Smirnov et al. PRB 2002 Imai et al. 2004 Arčon et al. EPL 2004 Zorko et al. PRB 2006

• • •

SINGLE IMPURITY PHYSICS

SINGLE IMPURITY PHYSICS

 A non-magnetic impurity breaks a singlet and releases a spin S=1/2, confined in the vicinity of the impurity

$$\langle S_r^z \rangle \sim (-1)^r \exp(-r/\xi)$$

SINGLE IMPURITY PHYSICS

 A non-magnetic impurity breaks a singlet and releases a spin S=1/2, confined in the vicinity of the impurity

$$\langle S_r^z \rangle \sim (-1)^r \exp(-r/\xi)$$

MANY IMPURITIES

Real 3D materials

MANY IMPURITIES

Real 3D materials

 $V_{\xi} = \xi_x \xi_y \xi_z$ Volume of the AF correlated clouds

• Effective interaction Sigrist and Furusaki JPSJ 1996

$$J^{\text{eff}}(x, y, z) \propto (-1)^{x+y+z} \exp(-\frac{x}{\xi_x} - \frac{y}{\xi_y} - \frac{z}{\xi_z})$$

MANY IMPURITIES

Real 3D materials

$$V_{\xi} = \xi_x \xi_y \xi_z$$

Volume of the AF
correlated clouds

• Effective interaction Sigrist and Furusaki JPSJ 1996

$$J^{\text{eff}}(x, y, z) \propto (-1)^{x+y+z} \exp(-\frac{x}{\xi_x} - \frac{y}{\xi_y} - \frac{z}{\xi_z})$$

• **3D** ordering controlled by
$$J_{3D} \exp(-\frac{x}{\xi_x} - \frac{y}{\xi_y} - \frac{z}{\xi_z})$$

• Average 3D coupling

$$\begin{aligned} T_{\rm c} \approx \langle J_{3D}^{\rm eff} \rangle = J_{3D} \times V_{\xi} \times p \\ & \text{if } V_{\xi} \, p < 1 \end{aligned}$$

A GENERIC "ORDER-FROM-DISORDER" SCENARIO

J. Villain *et al.* 1980 J. Bobroff *et al.* PRL 2009

A GENERIC "ORDER-FROM-DISORDER" SCENARIO

J. Villain *et al.* 1980 J. Bobroff *et al.* PRL 2009

MORE PHYSICS IN THE PRESENCE OF EXTERNAL FIELD?

Spin-gap + disorder + external magnetic field

MORE PHYSICS IN THE PRESENCE OF EXTERNAL FIELD?

Spin-gap + disorder + external magnetic field

MORE PHYSICS IN THE PRESENCE OF EXTERNAL FIELD?

Spin-gap + disorder + external magnetic field

BOSE-GLASS PHYSICS IN QUANTUM MAGNETS: ONLY A FEW EXAMPLES

IPACuCl3 (spin-1/2 ladders)

PHYSICAL REVIEW B 81, 060410(R) (2010)

 $Evidence \ of \ a \ magnetic \ Bose \ glass \ in \\ (CH_3)_2 CHNH_3 Cu(Cl_{\{0.95\}} Br_{\{0.05\}})_3 \ from \ neutron \ diffraction$

Tao Hong,¹ A. Zheludev,^{2,3,*} H. Manaka,⁴ and L.-P. Regnault⁵

IPACuCl3 (spin-1/2 ladders)

PHYSICAL REVIEW B 81, 060410(R) (2010)

 $Evidence \ of \ a \ magnetic \ Bose \ glass \ in \\ (CH_3)_2 CHNH_3 Cu(Cl_{\{0.95\}} Br_{\{0.05\}})_3 \ from \ neutron \ diffraction$


```
Tao Hong,<sup>1</sup> A. Zheludev,<sup>2,3,*</sup> H. Manaka,<sup>4</sup> and L.-P. Regnault<sup>5</sup>
```

```
• DTN (spin-1 chains)
```

Nature 489, 379 (2012)

```
doi:10.1038/nature11406
```

Bose glass and Mott glass of quasiparticles in a doped quantum magnet

Rong Yu¹, Liang Yin², Neil S. Sullivan², J. S. Xia², Chao Huan², Armando Paduan-Filho³, Nei F. Oliveira Jr³, Stephan Haas⁴, Alexander Steppke⁵, Corneliu F. Miclea^{6,7}, Franziska Weickert⁶, Roman Movshovich⁶, Eun-Deok Mun⁶, Brian L. Scott⁶, Vivien S. Zapf⁶ & Tommaso Roscilde⁸

 \vec{a}

 $Ni(Cl)_2 - 4SC(NH_2)_2$ dichlorotetrakis-thiourea nickel

spin S=1 carrier

3D (weakly) coupled S=1chains

$\frac{Ni^{2+}}{c}$

Bose-Einstein Condensation of S = 1 Nickel Spin Degrees of Freedom in NiCl₂-4SC(NH₂)₂

V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and A. Paduan-Filho

Phys. Rev. Lett. 96, 077204 – Published 23 February 2006

THE DISORDERED VERSION: DTNX

THE DISORDERED VERSION: DTNX

Doping does **not introduce non-magnetic impurities** It is reasonable to assume that it only **modifies the couplings** in the close vicinity of a Br

MICROSCOPIC PARAMETERS FROM NMR EXPERIMENTS A. Orlova *et al.* PRL 2017 M. Dupont *et al.* PRB 2017

 $Ni(Cl_{0.96}Br_{0.04})_2 - 4SC(NH_2)_2$

MICROSCOPIC PARAMETERS FROM NMR EXPERIMENTS A. Orlova *et al.* PRL 2017 M. Dupont *et al.* PRB 2017

 $Ni(Cl_{0.96}Br_{0.04})_2 - 4SC(NH_2)_2$

Localized state above H_{c2} at <u> $H^* \approx 13.6T$ </u>

MICROSCOPIC PARAMETERS FROM NMR EXPERIMENTS A. Orlova *et al.* PRL 2017 M. Dupont *et al.* PRB 2017

 $Ni(Cl_{0.96}Br_{0.04})_2 - 4SC(NH_2)_2$

Localized state above H_{c2} at <u> $H^* \approx 13.6T$ </u>

M. Dupont et al. PRB 2017

$$\Delta = J'_c - J_c + \frac{D' - D + \sqrt{(D' - D)^2 + (2J'_c)^2}}{2}$$

3d dynamics

3d dynamics

We also have analytical expressions for the local magnetisations: Nicely comparable to ED!

The $S^z = 1$ state is strongly localized on the perturbed dimer!

THEORETICAL MODELLING: SUMMARY

QMC STUDY OF THE MOST REALISTIC 3D S=1 DTNX MODEL M. Dupon M. Dupon

M. Dupont *et al*. PRL 2017 M. Dupont *et al*. PRB 2017

THEORY

VS

THEORY

VS

THEORY

VS

3) Is BEC* real (experimentally) ???

 $S_{\text{total}}^z = N_{\text{total}}$

n = 1

HARD-CORE

BOSONS

BEYOND SINGLE IMPURITY: HARD CORE BOSONS INTERACT!

BEYOND SINGLE IMPURITY: HARD CORE BOSONS INTERACT!

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\overline{\text{eff}}} \sum_{i,j} t_{ij} \sum_{i,j} b_i^{\dagger} b_{ij} \left(b_i^{\dagger} b_{j} \cdot c_{j} \right) h.c. \left(\mathcal{H}_{-} - (\mathcal{H}^*) \sum_{i} p_{ij} \cdot p_{ij} \cdot c_{ij} \cdot p_{ij} \cdot p_{ij} \cdot c_{ij} \cdot p_{ij} \cdot c_{ij} \cdot p_{ij} \cdot c_{ij} \cdot p_{ij} \cdot p_{ij} \cdot c_{ij} \cdot p_{ij} \cdot p_{$$

Many impurities: Effective (hard-core) bosonic model for the impurity states

$$\mathcal{H}_{\text{eff}} = -\sum_{i,j} t_{ij} \left(b_i^{\dagger} b_j + \text{h.c.} \right) - \left(H - H^* \right) \sum_i n_i$$

Random hoppings due to random positions of impurities

<u>chemical potential</u> controls the density of hard-core bosons

These objects may acquire a 3D coherence in the vicinity of half-filling for H~H* => The BEC* phase!

IS THE BEC* PHASE OBSERVABLE...?

IS THE BEC* PHASE OBSERVABI

• NMR relaxation

MORE ?

Multi-impurity effects

S? io Adjacent to the Bu dopynte for the the for a doping concentration x, given that each bond can weh_{400} accommodate a Br dopantion devo different Cl sites. We then use J'_c and D' as fitting parameters of the full low-temperature magnetization curve in Fig. 2a, which is calculated using QMC simulations (see Supplementary Information). We find an extremely good agreement Ebetween experimental data and simulation for $J'_c \approx 2.35 J_c$ and $D' \approx D/2$, giving us confidence that we are able to quantitatively model the fundamental microscopic effects of doping in Br-DTN. Indeed, the critical temperature for Bose-Einstein condensation, extracted from a finite size size analysis of the simulation data with doping x = 0.075(see Supplementary Information), is in 13.012.511.513.5H [T] nd 1 14.5 **bc**) a 1.2.*H*₽⁄ a.c. susc. kink dec. susc. kink -0.15C peak 0.8 QMC L0.100.8

cal

 C_V

in [%] the

for

5 T.

g to

ıch

In

on-

can

ied

ble

7 (K)

0.6

0.4

0.2

2

BG

MG 0

BEC

6

4

Figure 3 Phase diagrams in the field-temperature plane. a, Experimental phase diagram of Br-doped DTN from specific heat and susceptometry, compared to QMC data. The following phases are represented: Bose-Einstein

BG

12 14 16

6.6

10

H(T)

8

= 0.08

0.6

0.2

18

OFWI

0

BEC

H(T)

10

5

MI

15

and $\Delta(H) / k_{\rm B} = g \mu_{\rm B} \left(H_{c1}^{(0)} - H \right) / k_{\rm B} = 3.16 \text{ K for } H = 0 \text{ and } 1.64 \text{ K for } H = 1 \text{ T. Error bars, 1 s.d.}$

M. Dupont et al. PRB 2017

der

or

nlv

GLOBAL PHASE DIAGRAM

– Zero-field spin gapped systems with impurities: generic impurity-induced "order-from-disorder" mechanism

Subtle cooperative manifestation of disorder AND interactions !

Subtle cooperative manifestation of disorder AND interactions !

Subtle cooperative manifestation of disorder AND interactions !